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RESUMO

SANTOS, D. F. A. Aprendizado de maquina na previsao de resisténcia a puncao de lajes
lisas de concreto armado. 2023. 93f. Trabalho de conclusao de curso (MBA em Inteligéncia
Artificial e Big Data) — Instituto de Ciéncias Matematicas e de Computagdo, Universidade de
Sdo Paulo, S&o Carlos, 2023.

As lajes lisas estdo suscetiveis a um tipo de ruptura fragil conhecida como puncdo. Para
prevenir essa ruptura abrupta, que pode ocorrer de maneira brusca, é possivel adotar varias
medidas no estagio de projeto, como aumentar a altura efetiva da laje, a taxa de armadura de
flexd@o, a resisténcia do concreto, entre outros parametros. O objetivo deste estudo é avaliar
qual modelo de regressdo melhor se ajusta ao conjunto de dados e comparéa-lo com as normas
ACI 318 (2011), EUROCODE 2 (2004) e NBR 6118 (2014). Além disso, busca-se entender a
influéncia das variaveis na previsdo da resisténcia a puncdo. O dataset utilizado abrange 373
ensaios experimentais de diversos pesquisadores. Foram realizadas analises usando diferentes
normas e modelos de aprendizado de maquina. Entre os modelos de aprendizado de méquina
avaliados, o modelo polinomial apresentou os melhores resultados, demonstrando um
coeficiente de determinacdo superior em relacdo as normas e outros modelos de regressao.
Além disso, manteve uma previsdo consistente da resisténcia a puncdo ao longo da
aleatoriedade dos dados.

Palavras-chave: Aprendizado de maquina; regressao; laje lisa; concreto armado.



ABSTRACT

SANTOS, D. F. A. Machine learning in predicting punching shear resistance of
reinforced concrete flat slabs. 2023. 93 f. Trabalho de conclusdo de curso (MBA em
Inteligéncia Artificial e Big Data) — Instituto de Ciéncias Matematicas e de Computacéo,
Universidade de Séo Paulo, Sdo Carlos, 2023.

Flat slabs are susceptible to a type of brittle failure known as punching. To avoid this abrupt
failure, which can occur suddenly, it is possible to adopt several measures at the design stage,
such as increasing the effective height of the slab, the flexural reinforcement ratio, the
concrete strength, among other interruptions. The objective of this study is to evaluate which
regression model best fits the data set and compare it with the ACI 318 (2011), EUROCODE
2 (2004) and NBR 6118 (2014) standards. Furthermore, we seek to understand the influence
of variables in predicting puncture resistance. The dataset used covers 373 experimental trials
from different researchers. Analyzes were carried out using different standards and machine
learning models. Among the machine learning models evaluated, the polynomial model
presented the best results, demonstrating a superior coefficient of determination in relation to
norms and other regression models. Furthermore, it maintained a consistent prediction of
puncture resistance throughout the data randomization.

Keywords: Machine Learning;regression;flat slab;reinforced concrete.
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1 INTRODUCAO

As lajes lisas ou lajes planas, sdo denominadas desta forma, devido auséncia de vigas
no sistema estrutural, passando as lajes se apoiarem diretamente sobre os pilares. Este sistema
possui diversas vantagens, como a facilidade nas instalacbes prediais, versatilidade
geométrica, diminuicdo das cargas na fundacdo, pé esquerdos menores, consequentemente
mais andares, entre outros. Mas, como todo sistema apresenta algumas desvantagens, por
eliminar os porticos sdo mais suscetiveis a instabilidade global, além de serem propicios a um
tipo de ruptura denominado puncao.

A puncdo consiste em um modo de ruptura que ocorre em elementos de concreto
armado devido a esforcos de cisalhamento causados por cargas concentradas transversais ao
plano do elemento. Estdo sujeitos a esse tipo de ruptura as lajes lisas (apoiadas diretamente
sobre os pilares), sapatas e blocos de fundacdo em geral. O mecanismo de ruptura se
caracteriza por uma elevada concentracdo de tensdes e deformacBes em torno da carga
concentrada, que ocasionam a formacdo de uma superficie de ruptura em forma de cone,
conforme ilustrado na Figura 1.

A verificacdo a puncdo € de grande importancia em projetos estruturais com sistemas
de lajes lisas. Geralmente, o procedimento consiste em verificar a resisténcia a puncdo das
ligacGes laje-pilar, definida a partir de uma tensdo de cisalhamento resistente atuante em uma

superficie de controle situada a uma determinada distancia das faces do pilar.

Figura 1 — Puncdo em ligag&o laje-pilar segundo a NBR 6118 (2014).

Fonte: NBR 6118 (2014)

De acordo com GUANDALINI (2006), a puncéo representa um tipo abrupto de falha,
caracterizada por cisalhamento, que pode ocorrer como resultado da aplicagédo de uma carga
concentrada em uma area especifica, geralmente associada a reacdo de um pilar ou a uma

forca concentrada. A resisténcia a puncdo de lajes lisas de concreto armado pode ser
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sensivelmente afetada por diversos parametros, tais como a resisténcia & compressao do
concreto, a taxa de armadura de flexdo, bem como as caracteristicas geométricas e a espessura
da laje.

Este tipo de ruptura casou acidentes em alguns lugares pelo mundo a fora, por
exemplo, o edificio garagem Pipers Row Car Park — construido em 1965 na cidade de
Wolverhapton, Inglaterra — teve o colapso de uma de suas lajes em 1997. De acordo com
Wood (1997), um pedaco de 225m? da laje superior colapsou devido a ruptura inicial de uma
das ligacdes laje-pilar e que levou outras oito ligacbes a sofrerem o mesmo efeito
posteriormente. J& na cidade de Atlantic City, nos Estados Unidos, em 2003, ocorreu o
colapso do Cassino Tropicana, ainda em fase construtiva, levando a quatro vitimas fatais e
mais de 30 feridos. Outro grave acidente ocorreu em 2013, com o desabamento de parte da

obra do Shopping Rio Poty, em Teresina, PI, conforme apresentado na Figura 2.

Figura 2 — Acidentes causados pela ruptura & puncao

a) Pipers Row Car Park (WOOD, 1997) b) Shopping Rio Poty (OLIVEIRA et al.,
2013)

1.1 Justificativa

A puncdo tem sido um foco de inimeros estudos devido aos riscos associados a esse
modo de ruptura, incluindo a possibilidade de colapso progressivo. Ha uma vasta quantidade
de resultados experimentais disponiveis sobre o tema, mas ele continua sendo amplamente
debatido na comunidade cientifica. VVarios pardmetros podem afetar a resisténcia a puncéo de
lajes lisas de concreto e devem ser levados em consideragdo em estimativas teoricas de
projeto, que muitas vezes se baseiam em modelos empiricos desenvolvidos com base em
evidéncias experimentais. Portanto, o uso de aprendizado de maquina para prever a resisténcia

a puncao de lajes lisas pode ser uma abordagem interessante, especialmente porque as
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formulacBes normativas sdo empiricas, e modelos de regressdo linear podem ajudar a

compreender a influéncia desses parametros e a prever essa resisténcia com maior preciséo.

1.2 Objetivos

1.2.1 Objetivo Geral

Este estudo tem como objetivo geral analisar o desempenho comparativamente dos
critérios normativos de dimensionamento a puncdo de lajes lisas e modelos de Machine
Learning (ML), tendo como referéncia as normas ACI 318 (2014), EUROCODE 2 (2004) e
ABNT NBR 6118 (2014), baseando os resultados experimentais disponiveis em dataset.

1.2.2  Objetivo Especificos

e Estimar a capacidade resistente de lajes lisas através das normas ABNT NBR
6118 (2014), ACI 318 (2019) e Eurocode (2004), comparando com o0s
resultados experimentais do dataset;

e Analisar a influéncia dos parametros que contribuem na resisténcia a puncgéo
de lajes lisas adotando métodos de aprendizado de maquina baseados em
regressao;

e Comparar o desempenho de diferentes modelos de aprendizado de maquina
adotados na previsao da resisténcia a puncao;

e Estimar a capacidade resistente utilizando os modelos propostos de regressao
linear e redes neurais artificias, comparando-os com os resultados obtidos
experimentalmente;

e Comparar 0 modelo de regressao que apresentar melhor desempenho com os

modelos de célculo normativos.

1.3 Estrutura da monografia

Este estudo esta estruturado em seis capitulos. O primeiro capitulo abrange a
introducdo, justificagdo e objetivos da pesquisa. O Capitulo 2 inicia com uma descri¢do do

comportamento e dos pardmetros que exercem influéncia sobre a resisténcia & puncdo. Em
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seguida, sdo detalhados os modelos de célculo propostos pelas recomendacfes normativas
ACI 318 (2014), EUROCODE 2 (2004) e NBR 6118 (2014). O capitulo 3 apresenta uma
explanacao sobre o conceito de aprendizado de maquina, os diversos modelos de regressao
considerados neste estudo e as métricas de desempenho adotadas para a avaliacdo desses
modelos. No capitulo 4, é fornecida uma descricdo da metodologia adotada, englobando os
métodos de coleta de dados, célculos e andlises. O capitulo 5 concentra-se nas analises
realizadas com o conjunto de dados, considerando diferentes recomendacfes normativas e
modelos de regressdo. Por ultimo, o capitulo 6 engloba as conclusdes do estudo e sugere

direges para trabalhos futuros.



35

2 DIMENSIONAMENTO DE LAJES LISAS A PUNCAO

Neste capitulo, abordam-se aspectos relacionados ao comportamento estrutural de
lajes lisas, os pardmetros que exercem influéncia na resisténcia a pungéo destas. E por fim,
sdo apresentados modelos para estimar essa resisténcia, seguindo as diretrizes das normas
ACI 318 (2014), EUROCODE 2 (2004) e NBR 6118 (2014).

2.1 Comportamento estrutural das lajes lisas

O processo de ruptura por puncdo em uma laje plana com um pilar central, conforme
descrito por HOLANDA (2002), tem seu inicio quando a laje é submetida a carregamentos,
resultando na formacédo de uma fissura tangencial ao redor do pilar. Essa fissura, corresponde
a uma fissura de flexdo provocada pelos momentos negativos atuantes na direcdo radial. A
medida que os momentos fletores negativos se desenvolvem na direcdo tangencial e a carga
aplicada a laje aumenta, fissuras radiais comecam a se formar. Essas se propagam em direcédo
as bordas da laje devido as tensGes de tracdo tangencial. Proximo a ruptura, surgem fissuras
tangenciais mais uma vez, mas em uma regido mais afastada da area carregada. Essas fissuras
sdo ocasionadas pelas tensdes de flexdo e cisalhamento e, eventualmente, levam a ruptura por
puncdo (ver Figura 3). Conforme observado por BROMS (2005), a ruptura por puncéo
apresenta semelhancas com a ruptura por cisalhamento de uma viga, caracterizando-se por
uma fissura de cisalhamento que se estende das extremidades do pilar até a face superior da

laje, assumindo a forma de um tronco de cone.

Figura 3— Etapas de desenvolvimento de fissuras de puncéo. 1) formacao de fissura tangencial devido
a tensOes radiais; 2) formacéo de fissuras radiais devido as tensfes tangenciais; 3) estagio final da

ruptura por puncdo em laje lisa.
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Fonte: Adaptado de BROMS (2005).

2.2 Parametros que influenciam na resisténcia a puncao

As evidéncias experimentais disponiveis apontam que a resisténcia a puncao é
principalmente influenciada pela resisténcia a compressdo do concreto (fc), pela taxa de
armadura de flexdo tracionada (p), pelas dimensdes e geometria do pilar e pelo efeito de
escala (&), que se traduz na reducdo da tensdo resistente ao cisalhamento da laje a medida que
a altura atil (d) aumenta. Embora o uso de armaduras de cisalhamento tenha se mostrado
eficaz ao longo do tempo e tenha vérias vantagens comprovadas por diversas pesquisas, é
importante observar que este estudo se concentra exclusivamente em lajes planas sem 0 uso

de armadura de cisalhamento.

2.2.1 Resisténcia a Compressao do Concreto

A ruptura a puncdo de uma estrutura de concreto sem armadura de cisalhamento é
influenciada, entre outros fatores, pela resisténcia a tracdo do concreto. A resisténcia a tracédo
torna-se um parametro critico, uma vez que a puncdo envolve uma ruptura por tracdo
diagonal. Tanto formulagdes normativas quanto pesquisas experimentais geralmente
relacionam a resisténcia a tracdo do concreto como uma funcdo de sua resisténcia a
compressdo. De acordo com ANDRA e MATTHAEI (2000), a medida que ocorre 0 aumento
das fissuras, os tirantes se rompem gradualmente, resultando na formacdo de uma angulagéo,

conforme ilustrado na Figura 4.
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Figura 4- Modelo de Biela e Tirantes para puncdo em laje lisa
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Fonte: ANDRA e MATTHAEI (2000).

2.2.2 Taxa de Armadura de Flexdo Tracionada

Este parametro € definido como a razdo entre a area de armadura de flexdo tracionada
(As) pela area de concreto (Ac), onde a area de concreto é calculada multiplicando a altura
uatil da laje (d) por uma determinada largura. A norma EUROCODE 2 (2004) aborda a
contribuicdo da taxa de armadura de flexdo na resisténcia a puncao por meio da raiz cubica da
taxa de armadura. No entanto, a norma sugere que o ganho de resisténcia a puncdo € minimo
para taxas de armadura superiores a 2%, algo que a norma brasileira NBR 6118 (2014) nédo
leva em consideracdo. Tanto o ACI 318 (2014) quanto a norma canadense CSA A23.03
(2004) ndo incorporam esse parametro na estimativa da resisténcia a puncéo.

Com base em evidéncias experimentais, pesquisadores como REGAN (1986)
argumentam que a taxa de armadura desempenha um papel importante na estimativa da
resisténcia a puncdo. Elementos com uma maior taxa de armadura possuem uma zona
comprimida expandida, o que resulta em mais concreto sem fissuras capazes de resistir ao
cisalhamento, como ilustrado na Figura 5. Além disso, a abertura das fissuras de flexao é
reduzida, facilitando a transferéncia de forcas através do engrenamento de agregados e

potencialmente aumentando o efeito pino.
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Figura 5 — Comparacdo da taxa de armadura de flexdo a) menor taxa e b) maior taxa.
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a) Taxa de armadura de flexdo menor b) Taxa de armadura de flex&o maior
Fonte: Adaptado de REGAN (1986).
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2.2.3 Geometria e Dimensdes do pilar

Este pardmetro exerce uma influéncia significativa na resisténcia a puncéo, pois afeta
a distribuicdo das tensdes na ligacdo entre a laje e o pilar. Mesmo que o perimetro de controle
aumente com o aumento da secdo de um pilar quadrado, MOE (1961) identificou uma
concentracdo de esforcos cortantes nos cantos do pilar quadrado ao medir as deformacoes
verticais no pilar, proximo a superficie da laje (ver Figura 6).

Figura 6- Deformac®es verticais nos pilares da laje R2 de Moe
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Fonte: Adaptado de MOE (1961).

VANDERBILT (1972) conduziu uma série de experimentos envolvendo lajes

apoiadas em pilares quadrados e circulares, com o objetivo de avaliar como as dimensdes dos
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pilares afetam a resisténcia a pungdo. O parametro principal considerado foi a razdo entre o
perimetro do pilar e a altura util da laje (u0/d). Suas observagdes indicaram que as lajes
apoiadas em pilares circulares apresentaram uma maior resisténcia a tensdo cisalhante em
comparacdo com aquelas apoiadas em pilares quadrados de igual perimetro. Essa diferenca foi
atribuida a distribuicdo mais uniforme das tensdes nas conexdes entre a laje e o pilar circular.

HAWKINS et al. (1971) realizaram estudos sobre variagdes na razdo entre 0 maior € 0
menor lado do pilar (Cmax/Cmin) na faixa de 2,0 a 4,3. Suas conclusdes indicaram que,
qguando essa razdo excede dois, a tensdo nominal de cisalhamento diminui a medida que a
razdo entre os lados aumenta. Com base nesses resultados, o0 ACI 318 (2014) considera que 0
indice de regularidade dos pilares (1) pode reduzir em mais da metade a tensdo nominal de
cisalhamento nas proximidades dos pilares.

SAGASETA et al. (2014) realizaram analises computacionais nao lineares e
observaram que, em lajes com uma relagdo C/d igual a 1, a concentracdo dos esforcos nas
bordas dos pilares ndo é tdo evidente quanto em lajes com C/d igual a 4. Isso sugere que o0
fendmeno tem diferentes graus de influéncia, dependendo das variacbes na relacdo C/d, como

ilustrado na Figura 7.

Figura 7- Campo de tensdes e distribui¢do de esfor¢des normais no perimetro de 0,5d do pilar
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a) Cld=1 b) C/ld=4
Fonte: SAGASETA et al. (2014)

2.2.4 Efeito escala (Size effect)
De acordo com BAZANT (1984), materiais que experimentam ruptura fragil exibem

um fendmeno conhecido como efeito de escala, no qual a resisténcia diminui a medida que o

tamanho do elemento é variado. RICHART (1948) foi um dos pioneiros a investigar esse
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fendmeno e propor formulagdes para descrevé-lo. As normas EUROCODE 2 (2004) e NBR
6118 (2014) sugerem que esse parametro deve ser estimado usando a formula 1+(200/d)1/2.
No entanto, a Eurocode impde um limite de 2,0 para o resultado dessa estimativa de
resisténcia a puncdo. Essa limitagdo tem sido objeto de debate entre os pesquisadores, pois
argumentam que ndo ha base sélida para impor tal restricdo. Por outro lado, a norma CSA
23.03 (2004) recomenda que o efeito de escala seja calculado por meio da férmula
1300/(1000+d), com um limite de 1,0. E importante notar que o efeito de escala é
influenciado pelo aumento da altura util da laje; quanto maior o elemento, menor é a

contribuicdo desse parametro na resisténcia a pungdo, como ilustrado na Figura 8.

Figura 8- Efeito de escala (sizeeffect) em sapatas com dimensGes diferentes.
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a) laje de maior dimenséo b) laje de menor dimenséo

2.3 Meétodos para estimar a resisténcia a puncao

Nesta secdo, sdo discutidos diversos métodos tedricos disponiveis na literatura para
estimar a resisténcia a puncdo. Esses métodos foram desenvolvidos com base em evidéncias
experimentais disponiveis na época. Além disso, sdo apresentados modelos empiricos que sao
adotados por normas de projeto, incluindo a ACI 318 (2014), o EUROCODE 2 (2004) e a
NBR 6118 (2014).

2.3.1 Recomendagdes da norma ACI 318 (2014)

De acordo com o ACI 318 (2014), a andlise da resisténcia a puncdo em lajes lisas
envolve a verificacdo das tensdes de cisalhamento em um perimetro de controle localizado a
uma distancia d/2 das faces do pilar ou das extremidades da area carregada, conforme

ilustrado na Figura 9. A resisténcia a puncdo em elementos desprovidos de armadura de
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cisalhamento é calculada com base nas Equacdo 1 a 3, sendo considerado o valor minimo
entre elas.

Figura 9 - Modelo para verificacdo da resisténcia a puncdo do ACI 318
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Fonte: ACI 318 (2014).
2\ 1 5
VR'C=<1+E) .g.,/fc’.ul.d Equacéo 1
xg.dy 1
VR,C=(2+ ; ) -E-w/fc'-urd Equacio 2
0
1 ~
Vre = 3 Afc uy.d Equacéo 3

Onde:

Bc é arazdo entre a maior e a menor dimensao do pilar;

o, € uma constante que assume valor igual a 40 para o caso de pilares internos, 30
para pilares na borda e 20 para pilares no canto.

fc' é aresisténcia a compressdo do concreto, e é limitada em no maximo 69 MPa;

u, € o comprimento de um perimetro de controle afastado a d/2 da face do pilar;

d é a altura util da laje;

2.3.2 Recomendagdes da norma EUROCODE 2 (2004)
O EUROCODE 2 (2004) recomenda que para verificar a resisténcia a puncao em lajes

lisas de concreto armado sem armadura de cisalhamento é necessario fazer um perimetro de

controle afastado 2d da face do pilar ou area carregada, sendo o perimetro de controle
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determinado conforme ilustrado na Figura 10. Na estimativa da resisténcia a puncao adota-se
a Equacdo 4.

Figura 10 - Perimetro de controle para 0o EUROCODE 2
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Fonte: EUROCODE 2 (2004)
Ve =0,18. &. (100.p.f )3 uy .d = vppin - Uy . d Equacdo 4

Onde:

ul é o comprimento do perimetro de controle afastado 2d das faces do pilar;

d é a altura util da laje.

k =1+/200/d <2,0

= -p, £2,0 , x .
P=ANPx Py é a taxa de armadura de flex&o tracionada da sapata, onde px e py

sdo as taxas nas direces x e y, respectivamente. Nos calculos, devem ser consideradas as
barras dentro de uma regido afastada 3d das faces do pilar;

fc € a resisténcia a compressdo do concreto, que segundo o EUROCODE 2 (2004),
deve ser menor que 90 MPa, porém respeitando-se os limites estabelecidos pelos anexos de
cada pais;

Esta norma ainda recomenda a verificacdo da resisténcia da biela comprimida proxima

das extremidades do pilar, obtido pela Equacdo 5. Sendo u, o perimetro do pilar.

VR,max =0,30. f,c . <1 - ZfTCO> U - d EQanéo 5

2.3.3 Recomendagdes da norma ABNT NBR 6118 (2014)

O modelo empirico adotado pela norma brasileira para avaliar a resisténcia ao
cisalhamento em lajes lisas guarda semelhancas com o EUROCODE 2 (2010) para lajes. A
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andlise da resisténcia a pungdo em lajes lisas deve considerar os perimetros de controle: u0,
para a verificacdo da resisténcia & compressdo da biela préxima ao pilar, e ul, para a
verificacdo da resisténcia a tracdo diagonal. As discrepancias entre os dois modelos sdo
minimas e podem ser exemplificadas pelo célculo do size effect, que, na norma brasileira, ndo
é limitado a um valor méximo de 2,0. Além disso, a taxa de armadura de flexdo ndo é restrita
e pode exceder 2%.

No caso da Equacéo 6, a norma brasileira permite um aumento de até 20% no valor de
Vmax quando se trata de pilares internos, desde que 0s vaos que se conectam a esse pilar ndo

diferem em mais de 50% e ndo existem aberturas proximas ao pilar.

Vemax = 0,27 . f'c. <1 - 2f 53) U d Equacio 6
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3 APRENDIZADO DE MAQUINA

Neste capitulo é apresentado os conceitos de Aprendizado de Maquina, um ramo da
inteligéncia artificial, especificamente os algoritmos de regressdo. Neste estudo foram
utilizados os seguintes modelos de regressdo: LINEAR, ROBUST, LASSO, RIDGE,
ELASTIC NET, POLYNOMIAL, STOCHASTIC GRADIENT DESCENT, GRADIENT
BOOSTING, XGBOOST, RANDOM FOREST, SUPPORT VECTOR MACHINE E REDES
NEURAIS ARTIFICIAS.

3.1 Aprendizado de Maquina

O aprendizado de maquina (AM) é uma é&rea da inteligéncia artificial cujo objetivo é
identificar padrées em dados fornecidos e usa-los para fazer previsées (MECHELLI et al.,
2019).

Nas Ultimas décadas, com o crescimento da complexidade dos problemas que devem
ser tratados computacionalmente e do volume de dados gerados, tornou-se clara a necessidade
de ferramentas computacionais mais rebuscadas, que fossem mais independentes, reduzindo,
entdo, a necessidade de intervencdo humana (FACELI et al., 2011). Os algoritmos de AM
aprendem a induzir uma funcéo ou hipotese capaz de resolver um problema a partir de dados
que representam instancias do problema a ser resolvido. Esses dados formam um conjunto,
denominado dataset (conjunto de dados), na engenharia civil é costume denominar banco de
dados.

O dataset é formado por valores caracteristicos ou atributos que descrevem seus
principais aspectos, também chamados de campos ou variaveis. Para algumas tarefas de
aprendizado, um dos atributos é classificado como um atributo de saida (também chamado
atributo meta, atributo alvo ou variavel dependente), cujo valores podem ser estimados
através dos valores dos demais atributos (também chamados atributos previsores ou variaveis
independentes) (FACELI et al., 2011).

A forma com que os dados sdo apresentados gera uma influéncia sobre qual modelo de
algoritmo de AM deve ser utilizado. Eles séo divididos principalmente em quatro categorias:
aprendizado supervisionado, aprendizado n&o supervisionado, aprendizado semi-

supervisionada e aprendizado por reforco (MOHAMMED et al., 2016).
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No aprendizado supervisionado o objetivo é inferir uma funcdo ou mapeamento de
dados de treinamento rotulados. Dois grupos ou categorias de algoritmos estdo sob o conjunto
de aprendizado supervisionado: classificacdo e regressao, sendo esta Ultima categoria a de
interesse deste estudo. Ja no aprendizado nao supervisionado faltam supervisores, ou seja, 0S
dados néo sdo rotulados. O objetivo € encontrar uma estrutura oculta nestes dados (SARKER,
2021).

No aprendizado semi-supervisionado, os dados fornecidos sdo uma mistura de dados
rotulados e ndo rotulados. Esta combinacdo é usada para gerar um modelo apropriado para a
classificacdo/regressdo de dados. O alvo do aprendizado semi-supervisionado é aprender um
modelo que ira prever classes de dados de teste futuros melhores do que a partir do modelo
gerado usando apenas os dados rotulados. Por outro lado, o aprendizado por reforco norteia-se
nas observacdes recolhidas a partir da interagcdo com o meio ambiente para realizar acGes que
maximizem a recompensa ou minimizem o risco (SARKER, 2021).

Geralmente, a implementacdo do aprendizado de méaquina tem quatro etapas: (a)
dividir o banco de dados em conjunto de treinamento e conjunto de teste; (b) aplicar o
conjunto de treinamento para ajustar o modelo preditivo; (c) verificar se os requisitos de
precisdo sdo atendidos; d) emitir o modelo predito para teste ou ajustar os valores dos
hiperparametros (SHEN et al., 2022).

3.2 Modelos de regressao

Assim como foi dito anteriormente, o aprendizado supervisionado se divide em duas
categorias: classificacdo e regressdo. E importante distingui-las com base em suas
caracteristicas principais. A modelagem de classificacdo visa estimar uma funcdo que mapeia
variaveis de entrada X para saidas discretas, como roétulos ou categorias. Por outro lado, a
modelagem de regressdo também estima uma funcdo de mapeamento a partir de variaveis de
entrada X, mas para uma saida continua, ou seja, um valor real, inteiro ou de ponto flutuante
(BROWNLEE, 2017). Nesta secdo, apresentamos os algoritmos usados neste estudo, com
foco nos modelos de regresséo, que séo o principal foco deste trabalho.

A regressdo linear é um algoritmo amplamente utilizado em anélise preditiva, sendo
comum em projetos de previsdo. Quando envolve apenas um preditor (variavel), denomina-se
regressdo linear simples, e para varias variaveis preditoras, € chamada de regressdo linear
maltipla. Em esséncia, a regressdo linear emprega funcbes preditoras lineares, cujos valores

sdo estimados com base nos dados do modelo. Os modelos lineares sdo os métodos
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paramétricos mais simples e mesmo assim sdo amplamente adotados na ciéncia de dados, pois
muitos problemas, mesmo aqueles que ndo séo intrinsecamente lineares, podem ser abordados
com sucesso por meio desses modelos. Como mencionado anteriormente, a regressao € uma
técnica de previsdo adequada quando a variavel de destino é continua, e ela encontra diversas
aplicacBes. Portanto, é importante compreender como um modelo linear se ajusta aos dados,

suas vantagens e desvantagens, e quando pode ser preferivel considerar outras abordagens.
3.2.1 Métodos de Regularizacdo (RIDGE, LASSO E ELASTIC NET)

Varios métodos de regressdo linear foram desenvolvidos com o propdsito de criar
modelos regulares. Dentre eles, destacam-se 0s modelos RIDGE, LASSO e ELASTIC NET.

A abordagem que utiliza métodos de regularizacdo envolve a construcdo de um
modelo que incorpora todos os preditores, porém reduz os coeficientes estimados em relacéo
as estimativas obtidas pelo método dos minimos quadrados. Esse processo, conhecido como
encolhimento, visa reduzir significativamente a variancia, porém pode resultar em um
aumento no vies do modelo. Dependendo do tipo de regularizacdo aplicada, alguns
coeficientes podem ser estimados como exatamente zero, possibilitando a selecdo de variaveis
(PASSOS, 2014).

Em uma regressao linear, os coeficientes sdo estimados por meio do ajuste de minimos
guadrados, com objetivo de minimizar a Soma dos Quadrados dos Erros (SEQ), conforme
Equacdo 3.1. Quando se aplica penalizacdo a uma regressao, introduz-se uma penaliza¢do nos
parametros do modelo. Isso é feito com o objetivo de minimizar tanto a SEQ, quanto os
valores absolutos dos coeficientes. Geralmente, essa penalizacéo é direcionada aos parametros
que tém valores muito elevados, evitando que um parametro tenha um valor excessivamente
alto (PASSOS, 2014).

n
SEQ = Z(Yi —Y;)? Equacdo 3.1
i=1

A regressdo Ridge, também conhecida como penaliza¢do L2, implica na penalizacéo
dos coeficientes de forma quadratica, visando reduzir a Soma dos Quadrados dos Erros (SEQ)
(conforme Equacdo 3.1) enquanto busca estimativas de coeficientes que se ajustem bem aos

dados.
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Em comparacdo com o método de minimos quadrados, a vantagem da regressdo Ridge
estd diretamente relacionada a compensagdo entre viés e variancia. No caso de minimos
quadrados, as estimativas tém baixo viés, mas podem sofrer de alta variancia, o que significa
que pequenas variacfes nos dados de treinamento podem resultar em grandes alteracbes nas
estimativas dos coeficientes. A regressdo Ridge € mais eficaz em situagbes em que as
estimativas de minimos quadrados tém alta variancia. E importante notar que, ao contrario de
alguns métodos que selecionam modelos contendo apenas um subconjunto dos preditores, a
regressdo Ridge inclui todos os preditores no modelo final, o que pode ser visto como uma
desvantagem desse método (HASTIE et al., 2013).

Conforme descrito por KULAIF (2014), o método de Regressdo Ridge penaliza a
norma (2 do vetor wk. Em contrapartida, o LASSO utiliza a norma €1 do vetor wk em vez da
norma (2. Isso resulta em uma sele¢do de coeficientes de regressdo, que, no contexto deste
estudo, se traduz em ativacbes de neurdnios na camada intermediaria. O LASSO zerara os
coeficientes menos relevantes para a tarefa de regresséo, como demonstrado na Equagéo 3.2.

min, ||Hwi—sll3 + Crellweell, Equacéo 3.2

O ELASTIC NET surgiu como uma abordagem intermediaria entre 0 RIDGE e o
LASSO. Inicialmente, a ELASTIC NET foi desenvolvida para resolver o problema do
LASSO, que nédo lida bem com a multicolinearidade entre os regressores (ZOU e HASTIE,
2005). O ELASTIC NET lida com a previsdo de grupos de varidveis correlacionadas,
superando uma limitacdo do LASSO, que tende a selecionar arbitrariamente uma variavel
entre as altamente correlacionadas.

ELASTIC NET € uma combinacdo convexa de RIDGE, com a penalizacdo da norma
€2, e de LASSO, com a penaliza¢do da norma €1, como ¢ possivel observar na formulagdo da

Equacdo 3.3, onde €[0,+1] ak.
minillHwe—sl3 + ci [ (1 = @) Iwill? + aeliwll, | Equagio 3.3

3.2.2 Regressdo Robusta

Dado que é comum encontrar outliers em conjuntos de dados, a escolha de

implementar algoritmos de regressdo robustos para modelagem pode ser considerado uma
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decisdo sensata. Essa abordagem também pode ser necesséria quando se sabe que 0s residuos
ndo seguem uma distribui¢cdo normal ou tém uma distribui¢do desconhecida (SUSANTI et al.,
2014). Huber e Ronchetti (2009, p. 8) mencionam que um dos objetivos do uso de métodos
robustos “é resguardar contra desvios das suposigdes, em particular contra aqueles que estdo

proximos ou abaixo dos limites de detectabilidade”.
3.2.3 Regressdo Polinomial

Segundo SALEH (2022) a regressao polinomial é uma técnica baseada em um truque
que permite o uso de modelos lineares mesmo quando o conjunto de dados possui fortes néo
linearidades. A ideia é adicionar algumas variaveis extras calculadas a partir das existentes e

usando apenas combinagdes polinomiais (Equacéo 3.4).

m m
Vi = g + z a;xk + z Qi fpj (ks X s o, X Equacio 3.4
i=1

j=m+1

Na expressdo anterior, todo fPj(*) ¢ uma fun¢do polinomial de um tnico recurso. Por
exemplo, com duas variaveis, é possivel estender para um problema de segundo grau
transformando o vetor inicial (cuja dimensdo é igual a m) em outro de maior

dimensionalidade (cuja dimensao € k > m):
X = (xll Xz) - xt = (xll lexlzi x%lxll-XZ) Equagao 35
3.2.4 Random Forest (RF)

As arvores de decisdo, conhecidas como "decision trees," apresentam uma limitacéo
que as torna menos ideais para tarefas de aprendizado preditivo, que é a sua tendéncia a
imprecisdo. Nesse contexto, o algoritmo Random Forest surge como uma abordagem
aprimorada em relagdo as arvores de decisdo, pois combina multiplas arvores para criar um
modelo mais preciso e robusto. A ideia fundamental por tras do Random Forest, ou "floresta
aleatdria,” consiste em criar um conjunto de arvores de decisdo que sdo treinadas em
diferentes subconjuntos dos dados e, posteriormente, combinar as previsdes dessas arvores
para produzir uma previsao final (HASTIE, TIBSHIRANI e FRIEDMAN, 2013).
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A Floresta Aleatdria é um dos algoritmos mais amplamente utilizados em aprendizado
supervisionado devido a sua simplicidade em tarefas de classificagdo e regressdo. Trata-se de
um ensemble, ou seja, envolve a combinacdo de varios classificadores para melhorar os
resultados. O algoritmo opera criando amostras aleatdrias a partir do conjunto de treinamento,
em que cada nova arvore é gerada usando uma amostra aleatoria e um subconjunto aleatério
de atributos. Dentre esses atributos aleatorios, € selecionado um atributo mais representativo
para ser utilizado como critério de decisdo. Esse procedimento resulta em uma grande
diversidade de arvores, o0 que geralmente leva a criacdo de modelos mais robustos (OSHIRO,
2013).

De acordo com BREIMAN (2001), o criador do algoritmo, 0 Random Forest é eficaz
tanto em tarefas de classificacdo quanto de regressdo. Ele se baseia na utilizacdo de varias
arvores de decisdo e no conceito de bagging (bootstrap aggregating) para melhorar a precisao
e mitigar o overfitting. O bagging envolve a amostragem dos dados para criar diversos
subconjuntos a partir do conjunto de treinamento original. Ao treinar cada &rvore em um
subconjunto diferente dos dados e combinar as decisdes de cada arvore, a Floresta Aleatoria é
capaz de melhorar a precisdo do modelo.

A Figura 11 ilustra a estrutura de uma Arvore de Decisdo (AD). Inicialmente, a AD é
composta pelo no raiz, que representa o ponto mais elevado na hierarquia da imagem. A partir
desse no raiz, ocorre a ramificacdo para os nos filhos. Os nds que nao tém filhos sdo
denominados nos folha ou terminais (LIMA e AMORIM, 2020). Cada nd, ou retangulo
apresentado na figura, contém uma pergunta. O fluxo dos dados ocorre em direcdo as folhas,

partindo da raiz, e cada folha oferece uma decisao ou rétulo.
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Figura 11-Exemplo de arvore de regressao
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3.2.5 eXtreme Gradient Boosting (XGBoost)

O XGBOOST é um algoritmo de aprendizado de maquina que se baseia no método de
gradient boosting e é aplicavel tanto a tarefas de classificacdo quanto de regressdo. Esse
modelo utiliza arvores de decisdo que sdo agregadas por meio das técnicas de bagging e
boosting. No método de bagging, sdo gerados subconjuntos de arvores de decisdo, que séo
combinados para fazer previsfes. Essas arvores sdo construidas a partir de amostras bootstrap
do conjunto de dados original, como descrito por (JAMES et al., 2009). No entanto, mesmo
com a utilizacdo de diferentes amostras para criar arvores distintas, os subconjuntos tendem a
ser semelhantes. Para mitigar esse problema, apenas um subconjunto das caracteristicas do
modelo ¢ utilizado na construcdo de cada arvore, de forma semelhante ao que ocorre em uma
RF. A deciso final é obtida pela agregacéo das saidas de vérias arvores de decisdo, conforme
mencionado por (CHEN e GUESTRIN, 2016).

O método boosting, por sua vez, é introduzido no algoritmo através da construgéo
inicial de uma arvore com alto viés e baixa variancia, ou seja, com um alto grau de
overfitting. Posteriormente, as arvores subsequentes sao construidas de maneira a aprimorar a
arvore anterior, reduzindo gradualmente o overfitting a cada iteraco do processo de ajuste. E

a combinacdo dessas técnicas que permite ao XGBOOST operar eficazmente com grandes
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volumes de dados, usando menos recursos computacionais em comparagdo com outros
modelos. Essa abordagem é amplamente adotada por cientistas de dados para alcancar
resultados de alta qualidade em diversos desafios de aprendizado de maquina (CHEN e
GUESTRIN, 2016).

3.2.6  Support Vector Machine (SVM)

O principio das Maquinas de Suporte Vetoriais ou Support Vector Machine (SVM)
consiste em encontrar um hiperplano 6timo que separe membros e ndo-membros de uma
classe em um espago abstrato, denominado featurespace. Nesse espaco, as classes presentes
no conjunto de treinamento se tornam linearmente separaveis, e o hiperplano 6timo é definido
como aquele para o qual a margem de separacao entre elas € maximizada. Uma propriedade
importante das SVM esta na utilizacdo de kernels. Os kernels sdo produtos internos das
coordenadas de dois vetores, e sdo utilizados para constru¢cdo do hiperplano 6timo no
featurespace sem a necessidade de considerar a forma explicita desse, geralmente bastante
complexa (HAYKIN 1999).

Segundo DOSUALDO e REZENDE (2003) alguns exemplos de kernel utilizados séo:
o polinomial, o radial e o sigmoidal. Algumas vantagens apresentadas pelas SVM sdo:
trabalham bem quando o conjunto de dados possui uma alta dimensdo; costumam apresentar
uma alta precisdo na predicdo de valores; ndo existe o risco de encontrarem minimos locais,
um problema que ocorre bastante quando se trabalha com redes neurais artificiais. Uma
desvantagem apresentada pelas SVM é que os modelos fornecidos ndo sdo facilmente
compreensiveis ao ser humano.

Segundo (CORTES; VAPNIK, 1995) citado por (FILHO, 2020) algoritmo Support
Vector Machines (SVM) é um classificador utilizado em problemas que buscam classificar
dois grupos. Para atingir esse objetivo, 0 SVM implementa um modelo que recebe vetores que
ndo sdo mapeados linearmente e 0s projeta em uma dimensdo mais alta a fim de que possam
ser mapeados linearmente, garantindo uma decisdo. Para que isso ocorra é necessaria uma
funcdo chamada de kernel para manipular os dados com um conjunto de fungdes matematicas
usadas no SVM, a qual geralmente transforma o conjunto de dados de treinamento de forma
que uma superficie de decisdo nédo linear seja capaz de se transformar em uma equacao linear
em um ndmero maior de espacos dimensionais (BARAIK, 2020). A seguir é demonstrado
pela Figura 12 a aplicacdo da fungdo kernel e a projecdo de uma dimensdo acima para

encontrar a superficie de decisao.
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Figura 12—Aplicacdo da funcéo Kernel
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Fonte: JAIN (2017)

As vezes, no entanto, pode ser impossivel separar as duas classes corretamente, ou
pode-se ter alguns valores discrepantes, também chamados de outliers, que estdo dentro da
margem. Quaisquer pontos classificados incorretamente ou pontos dentro da margem seriam
penalizados. E aqui que entra o valor “folga”, denotado pela letra grega &. O Support Vector
Regressor (SVR) se diferencia em alguns aspectos, de uma maneira simplificada é imaginar
um tubo com uma funcédo estimada (hiperplano) no meio e limites de cada lado definidos por
€. O objetivo do algoritmo é minimizar o erro identificando uma funcéo que coloque mais dos
pontos originais dentro do tubo e, a0 mesmo tempo, reduza a “folga” como pode ser

observado na Figura 13 (DOBILAS, 2020).

Figura 13-Support Vector Regression — linha do hiperplano junto com linhas de limite definidas por

+- epsilon

X1

Fonte: DONILAS (2020)
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O SVM ¢ conhecido como um dos classificadores mais poderosos, no entanto, pode
apresentar uma alta complexidade de treinamento conforme o ndmero de padrdes, podendo
ser limitado para grandes conjuntos de dados. J& 0 SVR possui a desvantagem de apresentar
sensibilidade a ruidos e outliers (KIM et al., 2020).

3.2.7 Redes Neurais Artificiais (RNAS)

SARACOGLU (2008) apresenta as redes neurais artificias (RNAs) como algoritmos
que tém elementos de processamento semelhantes a neur6nios bioldgicos, chamados de nos
ou neuronios artificias e conectados uns aos outros por ponderacdo. Os pesos para essas
ponderacbes em cada conexdo sdo ajustados dinamicamente até que a saida desejada seja
gerada para uma determinada entrada.

Segundo DOSUALDO e REZENDE (2003) Redes Neurais Artificiais (RNAs) sdo
modelos computacionais inspirados no cérebro humano. Elas sdo compostas por Vvérias
unidades de processamento (neurénios), interligadas por um grande nimero de conexdes
(sinapses).

PETERMANN (2006) apresenta as fungdes béasicas dos neurdnicos, sdo elas: avaliar
valores de entrada; calcular o total para valores de entrada combinados; comparar o total com
um valor limiar; determinar o que sera a saida.

BOSCARIOLLLI et al. (2008) declara que a arquitetura de redes neurais MLP (Multi-
LayerPerceptron) consistem em uma especificacdo do nimero de camadas, tipos de funcéo de
ativacdo de cada unidade e pesos de conexdes entre as diferentes unidades que devem ser
definidas para a construcdo desta arquitetura neural. As redes construidas ocorrem por
maultiplas entradas e saidas, onde as saidas dependem das fungdes de transferéncia dos pesos
sinapticos que sdo ajustados pelo algoritmo de aprendizado, que ocorre com uso de um
conjunto de padrdes, conjunto de pares de entrada e saida (X. y) que definem, através de
exemplos, o sistema a modelar.

Segundo FENG et al. (2020) a MLP possui trés tipos de camadas, sendo estas, as de
entradas, ocultas e de saidas. A atribuicdo dessa rede é aprender uma funcéo de ativacao linear
a partir de um conjunto de entradas e saidas para solucionar problemas de classificagdo ou
regressao.

A grande vantagem das RNAs sobre os outros métodos é que elas ndo sdo restritas a
um unico atributo de saida, como acontece na maioria dos casos. Portanto, podem ser

realizadas varias regressdes em uma RNA. Além disso, as RNAs sdo conhecidas pela alta
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precisdo na predicdo dos valores e sdo robustas diante de dados com ruido. Porém, as RNAs
também apresentam algumas desvantagens. A primeira é que, dependendo do modelo de rede
e do algoritmo de aprendizado, as redes neurais podem apresentar lenta convergéncia para
uma solucdo. Isso porque a rede pode precisar ser treinada até que 0s pesos estejam corretos
de modo a fornecer a saida esperada. Outra desvantagem é que as solugdes por ela fornecidas
ndo sdo facilmente interpretadas pelos usuarios, pois 0 conhecimento esta embutido nos pesos
e conexodes da rede DOSUALDO e REZENDE (2003).

Na Figura 14 é ilustrado uma rede neural MLP de trés camadas, onde a camada de

entrada sdo dos dados de entrada de cada variavel x, o W; = [wi,wi, .., wl] e W, =
0 1,0 o] <5 i i i h —
[wP,wg, ..., wg] sdo, respectivamente, as matrizes de pesos de entrada e saida, enquanto B" =

[bf, bk, ...,bf;] é o vetor de polarizacdo da camada oculta, b° é a polarizacdo da camada de

saida, e as fungdes f e g correspondem as funcdes de ativacdo das camadas oculta e de saida,
nesta ordem (ZHANG, SUN e WU, 2019).

Figura 14-Representacdo de uma Rede Neural MLP
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Fonte: ZHANG, SUN E WU (2019)

O algoritmo de aprendizado profundo (deeplearning) € baseado em uma rede neural
artificial de alimentacdo em vérias camadas que € treinada utilizando aprendizado de
propagacao revresa (back-propagation).

LECUN et al. (2015) afirmam que o uso de aprendizado profundo permite modelos
computacionais compostos de multiplas camadas de processamento aprenderem

representacdes de dados com multiplos niveis de abstracdo. Além disso, os autores declaram
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que o aprendizado profundo utiliza backpropagation para indicar como uma maquina deve
alterar seus parametros internos que séo usados para calcular a representacdo em cada uma

das camadas anteriores.

3.3 Pré-processamento

Os valores dos atributos de um conjunto de dados podem ser numéricos ou simbdlicos.
Podem ainda estar limpos ou conter ruidos e imperfeicbes, com valores incorretos,
inconsistentes, duplicados ou ausentes, os atributos podem ser independentes ou relacionados.
Desta forma, técnicas de pré-processamento de dados sdo frequentemente utilizadas para
melhorar a qualidade dos dados por meio da eliminacdo ou minimizacdo dos problemas
citados. Essa melhora pode facilitar o uso de técnicas de AM, levar a construcdo de modelos
mais fiéis a distribuicdo real dos dados. Neste item sdo apresentadas algumas técnicas, de

forma resumida, para pré-processamento que foram adotadas neste estudo.

3.3.1 Limpeza dos dados

Conjunto de dados podem também apresentar dificuldades relacionadas a qualidade
dos dados. Algumas dificuldades encontradas s&o dados ruidosos (que possuem erros ou
valores que sdo diferentes do esperado), inconsistentes (que ndo combinam ou contradizem
valores de outros atributos do mesmo objeto), redundantes (quando dois ou mais objetos tém
0s mesmos valores para dois ou mais objetos) ou incompletos (com auséncia de valores para
alguns dos atributos em parte dos dados). Dados inconsistente, redundantes ou com valores
ausentes sdo de facil deteccdo. A principal dificuldade esta na deteccdo de dados ruidosos
(FACELLI et al., 2011).

Dados com ruidos sdo dados que contém objetos que, aparentemente, ndo pertencem a
distribuicdo que gerou os dados analisados (HAN e KAMBER, 2000). Os dados com ruidos
podem levar a um superajuste do modelo utilizado, pois o algoritmo que induz o modelo pode
se ater as especificidades relacionadas aos ruidos, em vez da distribui¢do que gerou os dados.
Por outro lado, a eliminacdo destes dados, podem levar a perda de informacéo importante, e
fazer com que algumas regides do espaco de atributos ndo sejam consideradas no processo de
indugdo de hipoteses. Um indicador da possivel presenca de ruido é a existéncia de outliers,

gue sdo valores que estdo além dos limites aceitaveis ou sdo muito diferentes dos demais
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valores observados para 0 mesmo atributo, representando, por exemplo, excecOes raramente
vistas (FACELLI et al., 2011).

3.3.2 Transformacéo de dados categdrico-numeérico

Técnicas como RNAs, SVM e vérios algoritmos de agrupamento lidam apenas com
dados numéricos. Assim, quando o conjuto de dados apresentar atributos simbdlicos, os
valores desses atributos devem ser convertidos para valores numéricos. Recursos humeéricos
fornecem melhor desempenho em algoritmos de classificagao e regresséo.

As técnicas de aprendizado de maquina, em sua maioria, ndo podem suportar apenas
varidveis categoricas, desta forma, sdo comumente codificadas usando One-hot Encoding
(OHE) (HUANG, 1997). Ja CHEN (2016) indica que em muitas tarefas tradicionais de
mineracgdo de dados, 0 OHE é amplamente usado para converter caracteristicas categoricas em
caracteristicas numéricas. OHE transforma uma Unica varidvel com n observacdes e d valores
distintos, em d variaveis binarias com n observacdes cada. Cada observacéo indica a presenca

1 ou auséncia 0 da d-ésima variavel binaria.

3.4 Andlise dos dados

3.4.1 Hiperparametrizacao e parametrizacao de algoritmos

No aprendizado de méquina existem os conceitos de parametro e hiperparametro de
algoritmo. O primeiro diz respeito aqueles que podem ser ajustados durante o processo de
aprendizagem e execucdo do modelo, como exemplo, 0 peso de neurbnios em redes neurais.
O segundo refere-se aos parametros que devem ser estimados anteriormente ao treinamento,
isto é, as configurac@es do algoritmo, como, taxa de aprendizado, fun¢do de ativacdo, nimero
de estimadores, entre outros (YANG e SHAMI, 2020).

O desempenho dos modelos preditivos é influenciado pelos metodos de otimizagao
empregados na aprendizagem. A otimizacdo dos hiperparametros, também conhecida por
parametrizacdo de algoritmo, sera responsavel por aperfeicoar a estrutura e precisdo do
modelo de previsdo (SUN et al., 2020).

Existem uma grande variedade de método de parametrizacdo de algoritmos como a

busca exaustiva em grades (Grid Search), busca aleatdria de parametros, otimizacdo
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bayesiana, reducdo sucessiva, entre outros. Entre os métodos apresentados o grid search é um
dos mais conhecidos, sendo o que seré adotado neste estudo.

O método grid searchconsite na determinacdo do melhor hiperparametro por meio da
avaliacdo intervalo de grade, testando todas as combinagdes possiveis no espago de pesquisa
pré-determinado. Essa técnica possui a vantagem de facil implementacdo, porém, demanda
muito tempo e perde eficiéncia & medida que a dimensdo do espaco de pesquisa aumenta, pois
0 nimero de pontos de grade cresce em ritmo exponencial, de modo que torna inviavel sua
aplicacdo para casos de alta dimensionalidade (YOO, 2019).

Overfitting é o superajuste aos dados. Em outras palavras, o superajuste ocorre quando
a hipotese se ajusta muito bem ao conjunto de dados utilizado durante o treino, mas se mostra
ineficaz na predicdo de novos exemplos. Neste caso, também é dito que a hipdtese memorizou
ou se especializou no conjunto de treinamento (FACELI et al., 2011).

Em alguns algoritmos como 0 XGBOOST, ¢ possivel evitar o overfitting com o ajuste
de hiperparametros, pois alguns deles acabam melhorando a variedade de arvores criadas pelo
modelo. Contudo, o verdadeiro foco do ajuste de parametros é encontrar uma configuracao
capaz de potencializar o desempenho do algoritmo utilizado. Uma das técnicas mais famosas
de tunagem de hiperpardmetros é o grid search, que utiliza conjuntos de valores pré-
estabelecidos de cada parametro para realizar uma analise combinacional e encontrar a melhor

configuracdo possivel (FACELI et al., 2011).
3.4.2 Meétricas de desempenho

As métricas de desempenho sdo utilizadas com o objetivo de avaliar os algoritmos de
aprendizado de méaquina, para os algoritmos de regressdo sdo comuns as métricas de erro
médio absoluto, erro médio quadratico, erro mediano absoluto e coeficiente de determinacéo
(AGWU et al., 2021).

O erro médio absoluto (MAE) é expresso pela equacdo. Ele representa a razdo entre o
somatorio de todos 0s erros e 0 nimero de pontos, cujo erros correspondem a distancia de

cada ponto a regressao. Para que um modelo preditivo seja perfeito, o MAE deve ser zero.

n
1
MAE = EZIYi - X;l Equacdo 3.6
i=1
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Onde,
n: numero de dados;

Y e X sdo, respectivamente, 0s valores previstos e reais.

O erro médio quadratico (MSE) tem como base o mesmo principio do MAE, no
entanto, leva em consideracdo o quadrado da distancia e quanto menor seu valor, melhor sera

a previsdo realizada pelo modelo. A sua expressao pode ser vista na Equacao.
1 n
MSE = ;Z(Yi - X;)? Equacéo 3.7
i=1

E uma medida de desvio da diferenca entre o valor real e o valor previsto. O RMSE
tem a mesma unidade de medida do atributo alvo, tornado mais facil mensurar a exatidao da
predicdo. Por isso, RMSE é a medida de erro mais comumente empregada em métodos de

regressdo (FACELI et al., 2011). Sua formula é apresentada na Equacao.

" (Y — h(X)?
RMSE = Z% Equacio 3.8
i=1

Onde,
Y; é o valor real da variavel;

h(X;) é o valor estimado pelo modelo preditivo.

O objetivo com esta medida é aproximar o valor de 0, pois quanto mais préximo de
zero menor € a distancia do ponto real com o ponto de predicdo. Esta medida expressa o erro
médio do modelo preditivo comparado com os dados reais.

Enquanto as trés métricas anteriores apontam o qudo distantes os dados estdo da
regressdo, o coeficiente de determinacdo (R?) demostra o grau de correlacdo entre as
variaveis, ou seja, uma medida estatistica de qudo proximos os dados estdo da linha de

regressdo ajustada. A Equacdo representa sua expressdo matematica.
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in(4 —A) (M; — M)

R? =
Jzz;l(Ai _ AP (M, — M)

Equacéo 3.9

Onde,
M; e A; sdo valores previsto e real, respectivamente;

M, e A, sdo suas médias.

Valores de R2 no intervalo de 0,7 a 0,9 descrevem uma alta correlagéo, enquanto entre
0,0 e 0,3 a correlacéo é irrelevante.
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4 METODOLOGIA

Na metodologia é apresentado os métodos adotados para a obtencdo dos resultados a
fim de responder os objetivos tracados. Desta forma, esse capitulo segue o pré-processamento,
coleta do banco de dados, analise exploratdria, os modelos e hiperpardmetros adotados na
analise de regressdo, o meétodo adotado na verificacdo da confiabilidade, as andlises

experimentais e numéricas computacionais.

4.1 Dataset

O dataset pode apresentar dificuldades relacionadas a qualidade dos dados, tais como,
dados ruidosos, inconsistentes, redundantes ou incompletos. Como a previséo dos modelos
ocorrem por meio dos dados, a sua qualidade precisa ser considerada, compreender os dados
que estdo sendo estudados e realizar uma analise criteriosa, garante um modelo confidvel. A
existéncia de ruido é percebida pela presenca de outliers, e 0s mesmos sao analisados para

verificar a influéncia que geram na previsdo dos modelos de regressdo e métodos de célculo.

4.1.1 Metodologia de Coleta do Dataset

@) dataset foi obtido no Kaggle, através da url:
https://www.kaggle.com/datasets/jrsuri/punching-shear-of-flat-concrete-slabs, disponibilizado
por Janior Suriano. Ele declara que o arquivo original € um banco de dados criado pelo The
American Concrete Institute Committee 445C com resultados experimentais de 519 lajes
planas ensaiadas por diversos autores desde 1938. Os dados foram filtrados por ele para lajes
que romperam apenas por puncdo e algumas das lajes no conjunto de dados original ndo
falharam por esse mecanismo, obtendo apos a filtragem 417 ensaios.

Dos 417 ensaios do dataset disponilizado por ele, foi realizado um tratamento
preliminar para reduzir a dimensionalidade do problema, considerando apenas as variaveis
mais relevantes que foram utilizadas em outros estudos sobre o assunto, como trabalhos dos
autores Junior e Gomes (2023) e Lu et al. (2020), bem como de acordo com a correlacdo de
Pearson. As variaveis de entrada selecionadas foram: altura util da laje (davg), perimetro do

pilar (C), resisténcia a compressdo do concreto (fc), resisténcia ao escoamento do aco (fy) e
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taxa de armadura de flexdo (pavg). A taxa de armadura considerada correspondeu apenas a

regido que passa pelo pilar. A varidvel de saida é a resisténcia a puncgéo da laje (Pu).

4.2  Analise exploratoria dos dados

A anélise exploratdria é a andlise detalhada das caracteristicas presentes em um
conjunto de dados que permite a descoberta de padrbes e tendéncias. Assim, uma grande
quantidade de informacdes pode ser extraida de um conjunto de dados, de modo, a auxiliar no
entendimento do problema e modelar a solugdo de maneira mais eficiente. Muitas dessas
caracteristicas sdo obtidas através do estudo estatistico descritivo (média, mediana e moda) e
induzidas por meio da observacdo do conjunto e representacdes visuais como graficos em
forma de histograma, dispersao ou boxplot.

A anélise exploratéria iniciou-se pela descri¢do dos dados, a plotagem dos gréaficos de
dispersdo de cada variavel, bem como a geracdo de gréaficos de boxplot e histrograma para
verificar a disposicdo dos dados. Outra analise importante realizada foi a verificacdo de
correlacdo dos dados, neste caso, optou-se pela analise de correlacdo de Pearson e Spearman.

E importante frisar que antes das analises de regressdo € necessario padronizar ou
normalizar os dados, pois estas analises sdo sensiveis a dimensionalidade dos dados. Desta
forma, foi realizado analises de padronizacdo usando o método Z-core da biblioteca
sklearnpreprocessing importando o StandardScaler. Ja para a verificacdo de normalizacdo
adotou 0 MinMax e RobustScarler ambos também da biblioteca sklearnpreprocessing. Nas
analises foram verificadas qual melhor método correspondia a analise exploratdria dos dados,
desta forma, adotando-o0 no modelo de regressao.

4.3 Processamento dos dados

4.3.1 Analise de Regressdo com Aprendizado de Maquina

Nesta pesquisa, foram utilizados os seguintes modelos de regresséo liner multipla:
LINEAR, ROBUST, LASSO, RIDGE, ELASTIC NET, POLYNOMIAL, STOCHASTIC
GRADIENT DESCENT (SGD), GRADIENT BOOSTING MACHINES (GBM), EXTREME
GRADIENT BOOSTING (XGBOOST), RANDOM FOREST (RF), SUPPORT VECTOR
REGRESSOR (SVR) E REDES NEURAIS ARTIFICIAS (RNAS). Os modelos sao

analisados para verificar qual modelo preditivo melhor se adapta aos dados. Dentre estes, sera
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escolhido o melhor modelo para comparativo com os métodos de célculo discutidos no topico
a seguir.

Uma etapa comum no pré-processamento de dados para modelos de ML € o
escalonamento de dados. Nos dados de entrada, os parametros costumam ter magnitudes e
unidades muito diferentes entre si, 0 que pode levar o modelo a atribuir incorretamente maior
importancia a varidveis com valores numéricos maiores. Para evitar esse problema, os dados
sdo dimensionados para que as caracteristicas sejam da mesma ordem de grandeza (com
valores proximos de zero, geralmente entre 0 e 1 ou entre -1 e 1). Neste estudo, trés métodos
de escalonamento da biblioteca Python scikit-learn (sklearn) sdo aplicados: StandardScaler,
RobustScaler e MinMaxScaler. De acordo com a documentagéo da biblioteca sklearn [46], o
StandardScaler transforma os dados através da técnica z-score, definindo média nula e desvio
padrdo unitario; o RobustScaler dimensiona recursos udando estatisticas robustas para
outliers; e MinMaxScaler dimensiona os dados para que os valores estejam sempre entre O e
1. Para cada algoritmo de ML, é utilizado o método de dimensionamento que obteve o0s
melhores resultados.

Antes de executar os algoritmos de AM, é comum dividir os dados em conjuntos de
treinamento e teste. Dessa forma, os modelos séo desenvolvidos com base em uma parte do
conjunto de dados (conjunto de treinamento) e testados com os dados restantes (conjunto de
teste), para avaliar sua precisdo com dados desconhecidos e evitar o overfitting. Para todos os
modelos deste estudo, os dados sdo divididos na proporcdo 70% treino e 30% teste, que € uma
proporcdo comum utilizada na literatura. A biblioteca para treinar os modelos de regressao foi
Train Test Split da sklearn. O escalonamento de dados é executado somente apds essa divisao
para evitar problemas como vazamento de dados. A técnica de validacdo repetida é usada para
cada algoritmo.

As andlises foram realizadas no python adotando as bibliotecas da sklearn para todos
0s modelos, exceto para a RNAs em que se adotou o Tensorflow/Keras. Os Hiperparametros
sdo especificados como parametros de entrada. A Tabela 1 apresenta as configuracfes usadas
para cada algoritmo, ajustados por meio de hiperparametros com grid search.

O Train Test Split adota 0 Random State é usado para definir a semente para o gerador
aleatério para que possamos garantir que os resultados obtidos possam ser reproduzidos.
Devido a natureza da divisdo dos dados em treinamento e teste, obtera dados diferentes
atribuidos aos dados de treinamento e teste, a menos que possa controlar o fator aleatério.
Para isso, informa-se um valor ao randomstate para que seja obtido sempre a mesma diviséo.

Desta forma, iniciou-se com valor de 42, porém a fim de verificar se 0 modelo ndo estava
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enviesado para essa distribuicéo, foi escolhido os 4 melhores modelos e rodados novamente
com dois novos Random State, no valor de 0 e 23, respectivamente.

Tabela 1 — Hiperparametros adotados em cada modelo

Modelos Parametros
LINEAR None

ROBUST base_estimator = LinearRegression, max_trials = 100
LASSO alpha=0.1, selection=random

RIDGE alpha = 100, solver = cholesky, tol = 0.0001

ELASTIC NET alpha=0.1, I1_ratio=0.9, selection=random

POLYNOMINAL Degree =3

SGD n_iter_no_change = 250, penalty = None, eta0 = 0.0001, max_iter = 100000

GB n_estimators=100

XGBOOST learning_rate = 0.3, max_depth = 2, n_estimators = 400, reg_alpha = 0.2,
reg_lambda =0.1

RF Numberofestimators = 100

SVR kernel = rbf', C = 10000, epsilon = 0.001

RNAS Number of Hidden layer = 2, number of neurons in each hidder layer = 64-32,

activation function = RelLU, optimizer = Adam, learning rate = 0.3, loss
function = MSE, epochs =50

Number of Hidden layer = 2, number of neurons in each hidder layer = 94-94,
activation function = RelLU, optimizer = Adam, learning rate = 0.3, loss
function = RMSE, epochs = 50

4.3.2 Comparativo dos Métodos de Calculo e Modelos Preditivos

Os modelos sdo calculados de acordo com o0 método de calculo proposto pelas normas
NBR 6118 (2014), ACI 318 (2014) e Eurocode 2 (2004). Com os valores previstos e reais
sera desenvolvido um gréfico de dispersdo para gerar o coeficiente de determinacdo (R?) e
comparar os valores, verificando se 0s métodos tedricos estdo prevendo de forma satisfatoria.

Com os modelos calculados, procede-se a comparacdo das estimativas entre si e em
relacdo aos resultados experimentais. Essa andlise é realizada considerando a dispersdo dos
resultados e examinando a influéncia dos pardmetros fc, d e p na relagdo Pu/Pteo, que

corresponde a razao entre a resisténcia da laje determinada experimentalmente e a prevista
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pelos modelos teodricos. Na determinacdo da resisténcia calculada da laje (Pteo), ndo aplica-se
nenhum coeficiente de reducéo da resisténcia dos materiais ou de aumento da solicitacdo.
Outra andlise fundamental é o coeficiente de determinacdo mdaltipla (R?) entre os
modelos estudados, pois ela medira o qudo proximos os dados estdo da linha de regressao
ajustada. A definicdo do R2 é a porcentagem da variagcdo da varidvel resposta que é explicada
por um modelo linear. Em geral, quanto mais proximo de 1,0 o R2, melhor o modelo se ajusta
aos seus dados. Quanto mais variancia for explicada pelo modelo de regressdo, mais proximos
0s pontos de dados estardo em relacdo a linha de regressdo ajustada. Teoricamente, se um
modelo pudesse explicar 100% da variancia, os valores ajustados seriam sempre iguais aos
valores observados e, portanto, todos os pontos de dados cairiam na linha de regresséo
ajustada. O RZ ndo pode determinar se as estimativas e predicBes dos coeficientes sdo

tendenciosas, assim, € prudente avaliar também o grafico de residuo.
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5 ANALISE DOS RESULTADOS

Neste topico é apresentado os resultados das analises de regressdo utilizando Machine
Learning (ML), para previsdo de resisténcia a puncdo de lajes lisas. Os resultados estdo
divididos em etapas, a primeira consistindo em uma andlise exploratoria dos dados (EDA); a
segunda referente a adocdo de 11 modelos de regressdo; a terceira extracdo dos melhores
modelos e analise deles variando o radomstate; e por fim, analise do melhor modelo com
diminuicdo dos pardmetros de entrada de acordo com a importancia de cada variavel. Apos
esta verificagdo, foram analisadas a previsdo conforme as normas ACI 318 (2019), NBR 6118
(2014) e EUROCODE 2 (2004), e por fim, a comparagdo delas com o modelo de ML que

melhor se adequou ao dataset.

5.1 EDA

Inicialmente foi gerado um pairplot (ver Figura 15) do conjunto de dados para
verificar a forma de distribuicdo destes. Ja € possivel com estes graficos de dispersdo e
histograma notar outliers no dataset. Observe que a relacéo resisténcia a puncdo experimental
(Pu) e altura atil (d) ja possuem uma correlacdo, verificando que a medida que d aumenta Pu

também aumenta.
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Figura 15 — Pairplot das variaveis.
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Além das informacgdes do boxplot que o gréfico de violino ja traz consigo, existe a
exibicdo da densidade dos dados. A é&rea formada em torno do boxplot representa a
distribuicdo dos dados. Os locais de maior area, existe uma grande concentracdo de dados,
enquanto em locais de menor area existe uma baixa concentracdo de dados. Assim, podemos
notar na Figura 16 que os dados possuem uma maior concentracdo na resisténcia a puncao
(Pu) abaixo de 1000 kN e que os dados com valores acima estdo sendo tratados como outliers.
E possivel notar ainda que os dados com pilares retangulares estdo mais concentrados, e as
demais geometrias seguem um padrdo mais proximo de um violino.
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Figura 16 —Grafico violino geometria do pilar x resisténcia a puncéo da laje.
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Para explorar de forma detalhada os dados de acordo com a geometria do pilar,
verificando sua influéncia nos dados, foi gerado o grafico pairplot com a disperséo de acordo
com a geometria do pilar, conforme apresentado na Figura 17. Observa-se que os pilares de
secdo retangular possuem uma melhor distribuicdo dos dados, possuindo uma densidade mais
concentrada e nenhum outlier das variaveis dependentes com a variavel independente (Pu).
Entretanto, conforme pode-se observar também no grafico de violino, as geometrias circulares

e quadradas possuem em sua uma distribuicdo mais dispersa com a presenca de outliers.
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Figura 17 —Pairplot das varidveis de acordo com a geometria do pilar.
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O jointplot é a jungdo de um grafico univariado, nesse caso um histograma, e um
bivariado, um scatterplot. Para melhor visualizacdo vejamos a Figura 18, representando a
relacdo da fc (resisténcia a compressdao do concreto) com Pu (resisténcia a puncédo
experimental) através deste tipo de grafico. Nota-se o que foi informado, ou seja, a presenca
de outliers e maior densidade na distribuicdo das geometrias do pilar circular e quadrado.
Além disso, é possivel observar que pouca influéncia existe na resisténcia a compressdo do
concreto (fc) no aumento da resisténcia a puncéao (Pu).
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Figura 18 —Grafico joinplot geometria do pilar x resisténcia a puncgéo da laje.
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Como no dataset esta presente dados categoricos, se faz necessario a conversdo deste.
Para isto, adotaremos o one-hot encoding, que ir& atribuir valor 0 ou 1, dependendo da
presenca ou auséncia da caracteristica. Neste caso, se a geometria for circular, na que
corresponde sua coluna adotara 1 e nas demais 0. A quantidade de pilares de acordo com sua
geometria pode ser observada na Figura 19. Assim, é possivel verificar que a uma pequena

quantidade de dados para pilares retangulares, comparada aos demais.

Figura 19 —Contagem de pilares de acordo com sua geometria.
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Além disso foi adicionado uma coluna com perimetro do pilar (C), calculado pelas

equacdes de perimetro correspondente a sua geometria, devido ser um parametro influente nas
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normas. A Tabela 2 apresenta as estatisticas descritivas do conjunto de dados apds esse

tratamento.

Tabela 2 — Descri¢do do conjunto de dados

Shape_S Shape_R Shape_C bl (mm) davg (mm) ravg b* (mm) b*/davg  fc (MPa)  fy (MPa) c Pu (kN)

count 373.000000 373.000000 373.000000 373.000000 373.000000 373.000000 373.000000 373.000000 373.000000 373.000000 373.000000 373.000000
mean 0.552279 0.058981 0.388740 190.809651 110.733858 0.012984 180.945954 1.844894  32.803304 461.788204 696.400202  384.302949
std 0.497927 0.235906 0488119 109579419  66.503567 0.006500 97.252714 0976712 18620875 117664667 383.255554  458.864432
min 0.000000 0.000000 0.000000  51.000000 29.972000 0.003252  39.898227 0.306909 8.662000 250000000 160.221225 24.000000
25% 0.000000 0.000000 0.000000 120.000000 76.200000 0.008445 109.955743 1.178097 22135000 376.000000 439.822972  165.000000
50% 1.000000 0.000000 0.000000 152.000000 107.000000 0.011749 159.592907 1.698113  28.050000 465.000000 608.000000  265.000000
75% 1.000000 0.000000 1.000000 229.000000 121.558210 0.015192  225.000000 2222222 35850000 530.000000 812.000000 405.000000
max 1.000000 1.000000 1.000000 901.000000 668.500000 0.050105 707.643745 8.000000 118.702500 749.000000 2830.574981 4915.000000

Outro ponto importante antes das andlises de regressdo é verificar se existem no
conjunto de dados valores ausentes, pois podem prejudicar a previsdo do modelo. Desta
forma, foi verificado através de um mapa de calor (heatmap) a inexisténcia de algum dado no

dataset, conforme ilustrado na Figura 20.

Figura 20 —Mapa de calor para valor ausente no conjunto dos dados
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De forma analoga, realizou-se um mapa de calor para verificar a correlagdo das
variaveis, através do método de correlacdo de Pearson e Spearman. Na Figura 21, vemos 0
mapa de calor pela correlacdo de Pearson, observa-se que altura util (davg) possui a maior
correlacdo com a resisténcia a puncdo (Pu), cerca de 91%. Enquanto, a geometria do pilar

(Shape_S, Shape-R, Shape_C), taxa de armadura (ravg) e o quociente de b* (largura da secédo
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correlagdo baixa ou

Figura 21 —Mapa de calor para correlacdo de Pearson

negativa.
Shape_S Shape_R Shape_C bl (mm) davg (mm)
Shape_S 0.02 0.01
Shape_R 0.10 -0.02
Shape_C 0.00

b1 (mm) 0.07

davg (mm) 0.01 -0.02 0.00

ravg 0.16 -0.08 0.13 0.01
b* (mm) 0.09 0.21 -0.19 m 0.48
b*/davg 0.18 0.18 0.27 0.35 -0.36
fc (MPa) 0.15 0.08 -0.19 -0.07 027
fy (MPa) -0.21 0.28 0.08 -0.05 0.14
c 0.17 -0.07 -0.14 049

Pu (kN) 0.09 -0.04 -0.07 0.49

ravg b* (mm) b*/davg fc (MPa) fy (MPa) C Pu (kN)
0.16 0.09 018 0.15 021 017 0.09
-0.08 021 018 0.08 028 -007 -0.04
013 019 027 018 0058 -014 -0.07
-0.01 m 0.35 -0.07 -0.05 049
-0.16 0.48 -0.36 0.27 014 049

0.01 019 0.07 018 0.04 0.02

0.46

O mesmo ocorre quando realizamos a correlagdo de Spearman, conforme Figura 22. A

altura atil mantém como maior correlacdo, porém um pouco menor, cerca de 81%. Enquanto,

0 perimetro do pilar (C) aumenta para 67%.

Figura 22 —Mapa de calor para correlagdo de Spearman

Shape_S Shape_R Shape_C bl (mm) davg (mm)

Shape_S 0.05 -0.04
Shape_R -0.13 0.01
Shape_C 0.04

b1 (mm) 0.01
davg (mm) 0.04 0.01 0.04
ravg 0.16 -0.07 -0.13 0.02
b* (mm) 0.18 0.25 0.31 0.87 0.54
b*/davg 0.23 0.24 0.35 0.27 043
fc (MPa) 0.16 0.08 -0.20 -0.10 0.23
fy (MPa) -0.19 047 0.1 -0.14 0.06
c 0.28 -0.06 025 0.96 0.55
Pu (kN) 0.10 0.07 0.14 0.81

ravg b* (mm) b*/davg fc (MPa) fy (MPa) C Pu (kN)

0.16 0.18 023 0.16 -0.19 0.28 0.10

-0.07 0.25 024 0.08 0.17 -0.06 0.07

-0.13 -0.31 -0.35 -0.20 011 -0.25 -0.14

0.02 027 -0.10 -0.14 EOEe

-0.27 0.54 043 023 0.06 = 0.55 0.81

0.00 023 -0.02 -0.10  0.03 0.06

0.43 0.01 -0.08

023 -0.22 -0.15 035 -0.19
-0.02 0.01 043 -0.03 0.42
-0.10 -0.08 -0.15 0.21

0.03 093 0.35 -0.03

0.06 -0.19 0.42

Realizando uma verificacdo em grafico de caixa (boxplot), pode-se notar os outliers

presentes nas variaveis e os dados precisdo ser padronizados/normalizados antes de realizar as

analises de regresséo (ver Figura 23).
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Figura 23— Boxplot das variaveis do conjunto de dados
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Diante das analises realizadas optou-se por reduzir as variaveis para as que tenham
maior correlacdo com a resisténcia. Entretanto, embora a taxa de armadura (ravg) apresentou
uma baixa correlacdo as normas NBR (2014) e EUROCODE 2 (2004) a adotam em suas
equacdes e alguns autores conceituados na area a consideram importante. Sendo assim, sera
mantida no conjunto de dados para que possa ser verificado melhor no modelo de regresséo a
sua importancia. Um outro ponto importante € que 44 lajes que ndo possuiam armadura

longitudinal na regido do pilar foram excluidas, restando 373 resultados experimentais.

5.2 Padronizacdo e normalizacdo

Ao finalizar a andlise exploratéria dos dados, iniciou-se a verificacdo dos dados
quanto a padronizacdo/normalizacdo. Para isso, foi proposto a analise de dois métodos de
normalizagdo e um de padronizacdo. Para a padronizacdo adotou-se o Z-core através da
biblioteca sklearn importando o StandardScaler. J& para a normalizacdo foram adotados os
métodos MinMax e RobustScaler da mesma biblioteca.

A Figura 24 apresenta o boxplot dos dados filtrados apds a EDA, porém ainda néo
normalizados ou padronizados. Nota-se ainda a presenca dos outliers, eles ndo foram retirados
do conjunto dos dados devido a sua natureza e para que possa se verificar apds as analises sua

influéncia na previsdo dos modelos. O mesmo pode ser notado na Figura 25 no pairplot.
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Figura 24— Boxplot ap6s o tratamento do conjunto de dados
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A Figura 26 apresenta os dados padronizados, observa-se 0s boxplot seguem uma

harmonia, estando numa mesma escala.

Figura 26— Boxplot pelo StandardScaler.

10

6

d ravg fc fy C Pu
count 3730000e+02 3730000e+02 3730000e+02 3730000e+02 373.000000 3 730000e+02
mean -1142964e-16  1428705e-16  1523952e-16 2.285928e-16  0.000000 -3809881e-17
std  1001343e+00 1.001343e+00 1001343e+00 1001343e+00 1001343 1.001343¢+00
min  -1216030e+00 -1499272e+00 -1298206e+00 -1802348¢+00 -1400891 -7.862603e-01
25% -5199758¢-01 -6.992037e-01 -5736913e-01 -7.300699¢-01  -0670367 -4785673e-01
50% -5622064e-02 -1902690e-01 -2556103e-01 273328502 -0230966 -2603453e-01
75%  1629821e-01 3402865¢-01 1638370e-01 5804922e-01 0302031 4516552e-02
max  8398276e+00 5719056e+00 4.619255e+00 2444214e+00 5576022 9.886978e+00

A Figura 27 apresenta os dados normalizados pelo MinMax, observa-se que 0s

boxplot nos dados padronizados ficaram melhores.
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Tabela 3 — Descri¢do do conjunto de dados padronizados

Figura 27— Boxplot pelo MinMax.
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Tabela 4 — Descricdo do conjunto de dados normalizados pelo MinMax

d ravg fc fy c Pu
count 373.000000 373.000000 373.000000 373.000000 373.000000 373.000000
mean 0.126481 0207704 0.219386 0424425 0.200789 0.073667
std 0.104151 0.138722 0.169218 0.235801 0143522 0.093818
min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 0.072398 0.110838 0.122437 0.252505 0.104706 0.028828
50% 0.120634 0.181344 0.176190 0.430862 0.167685 0.049274
75% 0.143433 0.254846 0.247073 0.561122 0.244080 0.077898
max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

A Figura 28 apresenta os dados normalizados pelo RobustScaler, observa-se que 0s
boxplot apresentaram uma melhor representacdo também comparada ao MinMax. Desta
forma, optar pelo StandardScaler ou RobustScaler nos modelos de regressdo sera a melhor
consideragao.

Figura 28— Boxplot pelo RobustScaler
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Tabela 5 — Descrigao do conjunto de dados normalizados pelo RobustScaler

d ravg fc fy [ Pu

count 373000000 373.000000 373.000000 373.000000 373.000000 373000000
mean 0082319 0183041 0346577 -0020856 0237522 0497096
std 1466186 0963302 1357701 0764056 1029767 1911935
min  -1698215 1259274 1413635 -1396104 -1203134  -1.004167
25%  -0679039 0489600 -0431280 -0577922 -0451874  -0.416667
50% 0000000 0000000 0000000 0000000 0000000  0.000000
75% 0320961 0510400 0568720 0422078 0548126 0583333
max 12379236 5684830 6609734 1844156 5971822  19.375000
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5.3 Analise dos modelos de regressao

Este topico tratard dos modelos de regressao analisados neste estudo, sdo ao todo 14
modelos considerados para verificar qual melhor se ajusta ao conjunto de dados coletados. Ele
esta dividido em uma analise inicial com todos os modelos de regressdo, apos sera realizado
uma analise variando o Random state para verificar se 0 modelo esta enviesado e evitar o
overfitting. Por fim, sera realizado a andlise da influéncia das variaveis independentes na
previsdo dos resultados, excluindo algumas variaveis preditoras baseado nos modelos
normativos, em especial o ACI 318 (2014) que considera apenas a resisténcia do concreto
(fc), perimetro do pilar (C) e altura Gtil em seus calculos.

5.3.1 Regressdo com RandomState 42

No primeiro momento foi analisado o modelo utilizando a biblioteca skearln, traintest
split, adotando 30% teste e 70% traino, e um radomstate de 42. A padronizacdo pelo
StandardScaler foi adotada para os dados.

O modelo de regressdo linear obteve uma intercepcdo 387,8007 e coeficientes de

acordo com apresentado na Tabela 6.

Tabela 6-Coeficientes do modelo de regressao

Parametros Coeficientes
d (altura util) 415,5381

p (taxa de armadura) 69,6375

C (perimetro do pilar) 35,6913

fc (resisténcia a compressdo do concreto) | 69,1340

fy (tensdo de escoamento do aco) 24,4885

Na tabela 7 e Figura 29 é apresentado os valores obtidos da métricas de desempenho
do modelo de regresséao linear. Observa-se que o coeficiente de determinacdo (R?) para teste e
traino obteve um valor de aproximadamente 0,85 e 0,90, respectivamente. Assim, este modelo

possui



Tabela 7-Métricas de Avaliacdo para o modelo de regressao

Test set Train set
MAE | 109,9151 103,5331
MSE 24276,15 23903,8871
RMSE | 155,8081 | 154,6088
R? 0,8547 0,8953

Figura 29— Modelo de regressao linear maltipla
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Figura 30— Erro valores
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A multicolinearidade (VIF) e de 6,8840, acima de 5, indicando multicolinearidade.
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Figura 31— Modelo de regressao linear maltipla
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A Figura 32 apresenta a métrica R2 para os modelos de regressdo. Constata-se que 0
modelo ROBUST para teste e traino obteve um valor de aproximadamente 0,66 e 0,69,
respectivamente. Assim, este modelo foi o que apresentou menor desempenho comparado aos
demais. Os modelos LASSO, ELASTIC NET, SGD e GB obtiveram valores de R?
semelhantes para teste e traino aproximadamente 0,85 e 0,90, respectivamente.

Em relacdo ao modelo de regressdo POLINOMIAL o coeficiente de determinacédo (R?)
para teste e traino obteve um valor de aproximadamente 0,93 e 0,98, respectivamente. Ja 0s
modelos ensemble XGBOOST e RF obteram valores altos de coeficiente de determinacao,
para 0 XGBOOST foram 0,92 para teste e 1,00 para treino. Ja o0 RF obteve 0,92 e 0,98, para
teste e treino, respectivamente.

O modelo baseado em hiperplano SVM apresentou valores também elevados de R?,
sendo 0,92 para teste e 0,99 para treino. Se utilizarmos o SVM combinando com o modelo
ensemble XGBOOST o modelo apresenta melhoras na previsdo. O coeficiente de
determinacéo (R?) para teste e traino apresenta valores de aproximadamente 0,95 e 1,00.

O modelo de redes neurais foi realizado utilizando o otimizador Adam, learning rate
de 0,3, ativacdo pelo Relu, e duas camadas de 64 e 32 no primeiro teste e depois duas
camadas de 94. O primeiro teste adotou o parametro loss MSE e o outro RMSE. Como pode
ser observado o modelo de RNA 64-32 e RNA 94-94 apresentou valores semelhantes de R?,
sendo 0,91 para teste e 0,96 para treino do modelo RNA 64-32 e 0,91 para teste e 0,95 para
treino do modelo RNA 94-94.
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O histograma residual pode ser usado para determinar se a variancia € normalmente

distribuida ou ndo. A suposicdo de normalidade provavelmente serd valida se o histograma

em forma de sino for simétrico e uniformemente distribuido em torno de zero.

A Figura 33 representa o histograma dos residuos com uma curva de densidade de

probabilidade continua dos residuos. Levando em consideracdo as informactes da figura

anterior e da seguinte, que avalia a normalidade da distribuicdo residual, revela que todos os

erros de previsdo dos regressores apresentam uma distribuigdo normal, com a maioria dos

residuos medidos em relacdo a sua densidade tendo o potencial de assumir a forma de um

sino. E possivel notar também a presenca de alguns outliers na distribuicdo dos residuos,

observando a flutuacdo da linha dos valores do erro.

0.0035

0.0030

0.0025

0.0020

0.0015

Density

0.0010

0.0005

0.0000
-1000

Figura 33— Erro valores
0.0035
—— Error Values —— Error Values
0.0030
0.0025
0.0020

0.0015

Density

0.0010
0.0005

0.0000
-500 0 500 1000 1500 2000 -1000 =500 0 500 1000 1500

a) ROBUST ERRO b) RIDGE ERRO



0.0030

0.0025

0.0020

0.0015

Density

0.0010

0.0005

0.0000

0.0030

0.0025

0.0020

0.0015

Density

0.0010

0.0005

0.0000

0.006

0.005

0.004

0.003

Density

0.002

0.001

0.000

0.006

0.005

0.004

0.003

Density

0.002

0.001

0.000

—— Error Values

=750 =500 -250 O 250 500 750 1000 125

¢) LASSO ERRO

—— Error Values

-750 -500 -250 O 250 500 750 1000 125
e) SGD ERRO
—— Error Values
-1000 =500 0 500 1000

g) POLINOMIAL ERRO

—— Error Values

-1000 =500 0 500 1000

Density

Density

Density

Density

0.0030 —— Error Values
0.0025
0.0020
0.0015
0.0010

0.0005

0.0000

=750 =500 -250 O 250 500 750 1000 125

d) ELASTIC NET ERRO

0.0030 —— Error Values
0.0025
0.0020
0.0015
0.0010

0.0005

0.0000

-750 =500 -250 O 250 500 750 1000 125

f) GBERRO

—— Error Values
0.005

0.004
0.003
0.002
0.001

0.000

-1000 =500 0 500 1000

h) XGBOOST ERRO

0.006
—— Error Values
0.005
0.004
0.003
0.002

0.001

0.000

=750 -500 -250 O 250 500 750 1000 125C



84

i) RFERRO i) SVM ERRO
0.005 —— Error Values 0.005 —— Error Values
0.004 0.004
30.003 30.003
@ @
T ]
0O 0.002 O 0.002
0.001 0.001
0.000 0.000
-750 -500 -250 0O 250 500 750 1000 -1000 -750 -500 -250 O 250 500 750 1000
k) ANN 64-32 ) ANN 94-94

Na Tabela 8 é apresentado as métricas de avaliacdo de desempenho dos modelos de
regressdo. Para ambos as métricas quanto menor seus valores melhores € o desempenho do
modelo. Isso indica que o modelo esta fazendo previsdes mais precisas.

O MAE mede a média das diferencas absolutas entre os valores reais e as previsdes do
modelo. Neste caso, pode-se verificar que o modelo com menor Erro Médio Absoluto é o
SVM com valor de 58,68 para teste e 16,61 para treino, seguido do POLINOMIAL com valor
de 60,87 para teste e 43,25 para treino. J4 o com valor mais alto é o GB, possuindo valores de
111,21 para teste e 102,19 para treino.

O MSE mede a média das diferencas quadraticas entre os valores reais e as previsdes
do modelo. E mais sensivel a erros grandes, pois os erros sio elevados ao quadrado. Isso
significa que erros maiores contribuirdo muito mais para o valor do MSE do que erros
menores. O menor valor de Erro Quadratico Médio é o modelo POLINOMIAL, com valores
11590,96 para teste, porém para treino foi 0 modelo XGBOOST com valor de 439,72. E o
pior foi 0 modelo ROBUST com valores de 56825,47 para teste e 69860,63 para treino.

O RMSE ¢ a raiz quadrada do MSE. Ele fornece uma métrica na mesma escala das
variaveis dependentes. O modelo com melhor desempenho para teste foi o POLINOMIAL
com valor de 107,66 e para treino XGBOOST com valor de 20,97. O modelo ROBUST
continua a apresentar o pior desempenho para esta métrica, com valor de 238,38 para teste e

264,31 para treino.



Tabela 8—Meétricas de Avaliacdo para 0os modelos de regressédo
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ROBUST RIDGE LASSO
Métricas | Testset | Trainset | Métricas | Testset | Trainset | Métricas | Testset | Train set
MAE 105,72 100,11 MAE 105,44 92,19 MAE 111,07 102,14
MSE | 56825,47 | 69860,63 | MSE | 34900,15 | 36448,54 | MSE 24231,16 | 23318,14
RMSE 238,38 264,31 RMSE 186,82 190,92 RMSE 155,66 152,70
R2 0,66 0,69 R2 0,79 0,84 R2 0,85 0,90
ELASTIC NET SGB GB
Métricas | Testset | Trainset | Métricas | Testset | Trainset | Métricas | Testset | Train set
MAE 110,62 101,49 MAE 111,21 102,19 MAE 110,62 101,49
MSE | 24358,67 | 23342,19 | MSE | 24253,26 | 23321,29 | MSE 24358,67 | 23342,19
RMSE 156,07 152,78 RMSE 155,73 152,71 RMSE 156,07 152,78
R2 0,85 0,90 R2 0,85 0,90 R2 0,85 0,90
XGBOOST POLINOMIAL RF
Métricas | Testset | Trainset | Métricas | Testset | Trainset | Métricas | Testset | Train set
MAE 64,10 7,94 MAE 60,87 43,25 MAE 63,31 26,89
MSE | 12982,31 | 439,72 MSE | 11590,96 | 4280,51 MSE 13774,01 | 5377,72
RMSE 113,94 20,97 RMSE 107,66 65,43 RMSE 117,36 73,33
R2 0,92 1,00 R2 0,93 0,98 R2 0,92 0,98
SVM ANN 64-32 ANN 94-94
Métricas | Testset | Trainset | Métricas | Testset | Trainset | Métricas | Testset | Train set
MAE 58,62 16,61 MAE 72,46 66,39 MAE 89,47 78,48
MSE | 13254,00 | 1590,52 MSE | 14325,58 | 9502,89 MSE 15497,00 | 12552,47
RMSE 115,13 39,88 RMSE 119,69 97,48 RMSE 124,49 112,04
R2 0,92 1,00 R2 0,91 0,96 R2 0,91 0,95

Alguns modelos disponibilizam a informacéo do grau de importancia de cada variavel

em suas previsdes. No caso do LASSO os valores de importancia para as variaveis sdo: d =
408,06, fc = 70,56, ravg = 67,51, C = 46,77, fy = 30,10. Como pode-se notar a altura util
possui maior influéncia na previsao deste modelo. Ja 0 ELASTIC NET O grau de importancia
sdo: d = 402,15, fc = 71,46, ravg = 65,58, C = 49,37, fy = 30,02. O modelo GB considera 0
grau de importéncia da seguinte: d = 84%, fc = 3,19%, ravg = 2,69%, C = 5,38%, fy = 4,9%.
O XGBOOST considera: d = 90%, fc = 2,49%, ravg = 2,95%, C = 3,07%, fy = 1,63%. E 0 RF
considera: d = 86%, fc = 2,35%, ravg = 3,59%, C = 4,44%, fy = 3,67%. Assim, como &

possivel observar em todos as técnicas de regressdo a variavel altura atil (d) € considerada de

maior importancia em suas previsoes.
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5.3.1.1 Comparacao dos modelos

Na Tabela 9 e Figura 34 pode ser visto 0s modelos adotados e suas métricas no teste.

Em relacdo a validacdo cruzada (cross-validation) um valor negativo, em geral, ndo é

esperado quando se utiliza validacdo cruzada em tarefas de aprendizado de maquina. O

proposito da validacdo cruzada é avaliar o desempenho de um modelo em dados de teste, que

sdo diferentes dos dados de treinamento, a fim de verificar sua capacidade de generalizacao.

Esses modelos com valores negativos podem indicar que estas técnicas ndo sdo

adequadas para o conjunto de dados analisados. Podendo ser que 0 modelo linear pode néo ter

funcionado bem para os dados altamente n&o lineares.

Nota-se que os modelos POLINOMIAL, XGBOOST, RF, SVM e RNA foram os que

melhor se destacaram. Desta forma, sdo 0s que prosseguiram nas proximas analises.

h B W N

L= - - -

11
12
13
14

Model

Linear Regression

Robust Regression

Ridge Regression

Lasso Regression

Elastic Net Regression

Gradient Boosting Regressor
XGBoost Regressor

XGBoost Regressor (Grid Search)
Polynomail Regression
Stochastic Gradient Descent

Random Forest Regressor

SVM Regressor

Boosted SVM Regressor (XGBoost)
Artficial Neural Network 64-32

Avrtficial Neural Network 94-94

MAE
111.117570
105.175405
105.441906
111.074756
110.621109
110.621109
64.100204
58511494
60.871236
111.212292
67.393387
56.629754
56.656622
72.458797

89.473237

MSE

24229 602264
47707.018137
34900.147300
24231.150068
24358.674495
24358.674495
12982.314827
9635.946299
11590.957367
24253.491449
16657.104403
13254.007898
8620.823939
14325.585820

15497.007920

RMSE
155.658608
218.419363
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155.663583
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156.072658
113.939962

968.162856
107.661309
155.735325
129.062405
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R2 Square
0.855014
0.714529
0.791163
0.855005
0.854242
0.854242
0922316
0942340
0930642
0.854871
0.900327
0.920690
0947218
0.914278

0.907268

Tabela 9—Métricas de Avaliacdo do teste para 0os modelos de regresséo

Cross Validation
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-85.270961
-85.227070

-5.006947
-7.159933
-4.958600
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0.000000
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Figura 34— Desempenho do R2 nos modelos de regressao
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5.3.2 Regressdo com Random State 0

Com as analises realizadas anteriormente foi possivel verificar os modelos que melhor
se adequam na previsdo. Diante disto, foi escolhido os 5 melhores modelos, sendo estes:
POLINOMIAL, XGBOOST, RF, SVM e ANN; para que seja analisado alterando o Random
State para 0.

O modelo polinomial apresenta uma constancia no coeficiente de determinagéo (R?),
os valores ficaram préximos da analise utilizando Random state 42, ou seja, 0,93 para teste e
0,98 para treino. Enquanto para um Random state 0 o valor aproximadamente para teste foi de
0,98 e para treino 0,97 (ver Figura 35).

Os modelos XGBOOST, RF e SVM alterando o Random State é possivel verificar que
ndo apresentou um R2 para teste e traino confiavel, indicando overfitting. Ja os modelos RNA
apresentaram resultados satisfatorios, uma constancia na previsibilidade.
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Figura 35— Modelo de regressdo com Random state 0.
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A Figura 36 apresenta o grafico de erros e de residuos. No gréfico de erros e residuos é

possivel a presenca de alguns outliers. No entanto, ndo prejudicam de maneira significativa o

modelo.
Figura 36— Erro valores e residuos do modelo polinomial
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Na Tabela 10 ¢ apresentando as meétricas de avaliacdo para 0os modelos com Random

state 0. E possivel constatar que o modelo POLINOMIAL apresenta as melhores métricas
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para 0 MAE, MSE, RMSE e R2 Desta forma, confirma que o modelo é o que apresenta
melhor desempenho para o conjunto de dados analisados neste estudo.

Tabela 10-Métricas de Avaliacdo para os modelos de regressdo com Random state 0

XGBOOST POLINOMIAL RF
Métricas | Testset | Trainset | Métricas | Testset | Train set | Métricas | Testset | Train set
MAE 67,02 5,34 MAE 46,51 49,53 MAE 74,44 23,50

MSE 55697,65 62,89 MSE 5218,47 | 6218,81 MSE | 74952,14 | 2256,41

RMSE 236,00 7,93 RMSE 72,24 78,86 RMSE 273,77 47,50

R2 0,76 1,00 R2 0,98 0,97 R2 0,68 0,99

SVM ANN 64-32 ANN 94-94

Métricas | Testset | Trainset | Métricas | Testset | Train set | Métricas | Testset | Train set

MAE 82,31 17,68 MAE 56,81 52,62 MAE 53,18 45,23

MSE | 153799,86 | 2605,44 MSE 9552,26 | 7107,70 MSE 11628,52 | 5298,20

RMSE 392,17 51,04 RMSE 97,73 84,31 RMSE 107,83 72,79

R2 0,35 0,99 R2 0,96 0,96 R2 0,95 0,97

5.3.3 Regressdo com Random State 23

Para certificar definitivamente o enviesamento dos modelos e confirmar que o modelo
polinomial € o que melhor se adequa aos dados e que as redes neurais apresentaram também
bom desempenho, foi realizado uma nova andlise alterando o Random State para 23.

O modelo polinomial apresenta uma constancia no coeficiente de determinacdo (R2),
os valores se mantém préximos da analise utilizando Random state 42 e 0, ou seja, 0,93 para
teste e 0,98 para treino para 42, e 0,98 para teste e 0,97 para treino, respectivamente. J& 0s
valores para Random State 23 sendo 0,95 para teste e 0,98 para treino (ver Figura 37 e Tabela
11).

Figura 37— Modelo de regressdo polinomial com Random state 23.
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Os demais modelos séo apresentados de forma resumida na Tabela 11. Nota-se que o

SVM melhora suas previsdes com essa divisao dos dados, passando a ter um R2 de 0,94 e 0,99

para teste e treino. Embora os valores sejam interessantes 0 modelo ndo consegui previr bem a

aleatoriedade, conforme constado com o Random state 0. Os modelos baseados em redes

neurais se mostraram bastante promissores, conseguindo prever bem na aleatoriedade dos

dados.
Tabela 11-Métricas de Avaliacdo para os modelos de regressdo com Random state 23
XGBOOST POLINOMIAL RF
Meétricas | Testset | Trainset | Métricas | Testset | Trainset | Métricas | Testset | Train set
MAE 62,98 5,96 MAE 50,05 45,36 MAE 64,81 28,59
MSE | 15062,46 | 79,71 MSE 6428,07 5791,75 MSE | 19961,07 | 6087,26
RMSE 122,73 8,93 RMSE 80,17 76,10 RMSE | 141,2836 | 78,02
R2 0,89 1,00 R2 0,95 0,98 R2 0,86 0,97
SVM ANN 64-32 ANN 94-94
Métricas | Testset | Trainset | Métricas | Testset | Trainset | Métricas | Testset | Train set
MAE 44,91 19,12 MAE 65,77 69,20 MAE 56,32 51,37
MSE 7292,46 | 2789,97 MSE 10949,54 | 12991,63 MSE 9636,96 | 8042,37
RMSE 85,39 52,82 RMSE 104,64 113,98 RMSE 98,17 89,68
R2 0,94 0,98 R2 0,92 0,95 R2 0,93 0,97
5.4 Influéncia das Variaveis ACI 318

De acordo com a correlacdo de Pearson as varidveis altura atil(d), resisténcia do

concreto (fc) e perimetro do pilarc (C) sdo as varidveis de maior correlacdo com a resisténcia

a puncao (Pu). Os valores de correlacdo sdo apresentados na Figura 38.

Figura 38— Mapa de calor da correlacdo de Pearson para as variaveis do ACI 318
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O modelo polinomial apresenta o coeficiente de determinagdo (R?) para teste e treino
com valores de 0,93 conforme apresentado na Tabela 12 e Figura 39. Observa-se que a
excluséo das varidveis de taxa de armadura de flexdo e tensdo de escoamento da armadura
possuem pouca influéncia no modelo, e que a falta de dados destas variaveis ndo prejudica de
forma dréastica 0 modelo, ou seja, com apenas as variaveis de altura Gtil, perimetro do pilar e
resisténcia & compressdao do concreto, é suficiente para realizar uma boa previsdo da
resisténcia a puncdo de lajes lisas. Em muitos casos, coletar as informacdes para construcao
de um banco de dados experimental de ensaios de engenharia civil € complicada, pois em
muitos estudos os autores ndo fornecem todas as informacdes de seus experimentos. Desta
forma, os dados acabam sendo descartados das andlises. Outro ponto a destacar, é que 0
estudo demostra que é possivel realizar o dimensionamento de lajes lisas apenas por meio

destas variaveis.

Tabela 12—Métricas de Avaliacdo para o modelo polinomial variaveis ACI

Test set Train set
MAE | 70,31 74,19
MSE | 15980,79 | 13410,06
RMSE | 126,41 115,80
R? 0,93 0,93

Figura 39— Modelo de regressdo polinomial variaveis ACI
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5.4.1 Influéncia da variavel altura util

Como pode ser observado nas analises realizadas anteriormente, a altura Gtil possui

maior influéncia na variavel dependente, ou seja, na previsao da resisténcia a puncéo de lajes
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lisas. Desta forma, optou-se em realizar a previsdo somente com essa variavel independe no
modelo polinomial. Nota-se que esté varidvel ainda consegue prever boa parte da resisténcia,
possuindo um R2 de 0,87 e 0,80, para teste e traino, respectivamente (ver Tabela 13 e Figura
40).

Tabela 13—Meétricas de Avaliacdo para 0 modelo polinomial variavel d

Test set Train set
MAE | 117,71 131,58
MSE 30732,11 40346,43
RMSE | 175,30 200,86
R? 0,87 0,80

Figura 40— Modelo de regressdo polinomial variavel d
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5.5 Comparativo normativo e modelo preditivo em ML

A Figura 41 apresenta a distribuicdo das relaces Pu/Pteo e suas respectivas dispersdes
para as normas ACI 319 (2019), NBR 6118 (2014), EUROCODE 2 (2004) e Modelo
Polinomial. Comparando-as com os resultados ideais, devidamente representados pelas retas
que sugerem comparativamente a admisséo de Pu=Pteo. Observa-se que 0 modelo polinomial
dentre os Random state analisado o de menor valor foi de 0,95 e esse modelo foi 0 adotado
aqui na analise para efeitos comparativos. Desta forma, é possivel notar que o modelo
apresentou melhores resultados quando comparado com as normas. A norma ACI 318 (2014)
foi a que apresentou menor desempenho, apesar de ndo considerar alguns parametros em sua
formulacdo empirica, talvez a formulagdo proposta ndo tenha sido a adequada, visto que o

modelo polinomial mesmo com a reducdo das variaveis conforme a ACI apresentou para o
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modelo polinomial um bom desempenho, com R2 de 0,93 para teste e treino, conforme visto
no 5.4.1.

Figura 41— Distribuicéo das relacdes experimental pelas normas ACI 318 (2019), NBR 6118
(2014), EUROCODE 2 (2004) e modelo polinomial.
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Com este estudo pode-se constatar que a utilizacdo do aprendizado de maquina na
engenharia civil pode contribuir significativamente para melhor compreensao dos dados, além
de aprimorar 0s conhecimentos ja existentes do assunto. As normas de laje lisa foram
desenvolvidas de forma empirica. Neste caso, 0 AM pode contribuir significativamente para
melhoria das previsées normativas.

A consideracdo do modelo de regressdo e seus hiperparametros sdo fundamentais para
obter bons resultados, pois a gama de técnicas disponiveis atualmente devem ser exploradas a
fim de ser utilizada no conjunto de dados a que melhor se adequa. Como pode ser visto, em

muitas técnicas os dados nédo tiveram boa representatividade, sendo piores em desempenho se
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compararmos com as normas. Por outro lado, algumas técnicas apresentaram overfitting,
talvez uma analise mais profunda poderia ajudar na compreensdo dos dados, tais como a
verificacdo dos outliers e suas remocdes, ajustes nos hiperparametros, validagdes cruzada tipo

k-fold, entre outros.
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6 CONCLUSOES

Buscou-se analisar a precisdo de alguns métodos teoricos disponiveis para a estimativa
da resisténcia a puncdo de lajes lisas de concreto armado sem armadura de cisalhamento.
Foram avaliadas as recomendacdes das normas ACI 318 (2014), EUROCODE 2 (2004), NBR
6118 (2014) e modelo de aprendizado de méaquina. As conclusdes obtidas sdo descritas a
sequir.

A EUROCODE 2 (2004) dentre as normas foi a que apresentou melhor desempenho.
Ja 0 modelo de ML destacou-se 0 modelo POLINOMIAL, pois representou melhor os dados
mesmo alterando o Random State e diminuindo o0 nimero de varidveis independentes. Desta
forma, é importante destacar, que somente com os parametros de altura util, resisténcia do
concreto a compressdo e perimetro do pilar é suficiente para prever bons resultados com o
modelo polinomial, o que diminui muito a coleta dos dados experimentais.

Outro ponto que se destaca € a influéncia da altura Gtil na previsdo dos modelos,
somente esta variavel possui uma faixa de influéncia de acordo com os modelos analisados de
87 a 91% na previsdo da resisténcia a puncéo.

A consideracdo somente das varidveis independentes, altura util, resisténcia do
concreto e perimetro do pilar apresentaram para o modelo polinomial um bom desempenho,
com Rz de 0,93 para teste e treino, valores maiores que 0s obtidos pelas normativas.

Os modelos em RNA também apresentaram bons resultados, podendo serem objetos
de aprofundamento em um outro estudo, alterando os hiperparametros, nimeros de camadas,
entre outros, para verificar o melhor ajuste neste conjunto de dados.

A consideracdo de modelos de aprendizagem de maquina para melhorar a previsao da
resisténcia a puncdo em lajes lisas se mostrou interessante e um excelente ponto de discusséo,
pois pesquisas mais profundas no assunto podem contribuir para melhoramento dos modelos
de calculo ja existentes e auxiliar em uma melhor compressao da influéncia das variaveis no
resultado da resisténcia a puncéo das lajes lisas. Esses modelos podem ser extrapolados para

outros problemas, envolvendo diversos assuntos da &rea da engenharia civil.

6.1 SugestOes para trabalhos futuros

A pesquisa realizada contribui para a identificacdo de alguns aspectos relevantes sobre
0 comportamento a puncao de lajes lisas de concreto armado. Para dar continuidade ao estudo
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realizado, outras pesquisas podem ser feitas, buscando investigar mais profundamente os
aspectos observados. Dentre eles, temos:

e Analisar os outliers com maior rigor para verificar a influéncia deles nos
modelos preditivos, podendo adotar modelos como Holdout, k-fold, Leave-
One, Stratifield k-fold, Shuffle, entre outros;

e Verificar de forma mais profunda os modelos RNAs que apresentaram bons
resultados;

e Propor melhorias nas normas com base nos modelos de aprendizado de
maquinas;

e Analisar lajes lisas com armadura de cisalhamento. Verificando como ocorre a
ruptura nas diversas regides e se as normas e modelos de ML conseguem
estimar bem essas rupturas;

e Buscar analisar as recomenda¢fes normativas da EUROCODE 2 (2010) e
NBR 6118 (2014) quanto ao Vmax;

e Verificar a influéncia do sizeeffect na resisténcia a puncdo em lajes lisas de

concreto armado.
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