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RESUMO 

SANTOS, D. F. A. Aprendizado de máquina na previsão de resistência à punção de lajes 

lisas de concreto armado. 2023. 93f. Trabalho de conclusão de curso (MBA em Inteligência 
Artificial e Big Data) – Instituto de Ciências Matemáticas e de Computação, Universidade de 

São Paulo, São Carlos, 2023. 

 

As lajes lisas estão suscetíveis a um tipo de ruptura frágil conhecida como punção. Para 

prevenir essa ruptura abrupta, que pode ocorrer de maneira brusca, é possível adotar várias 

medidas no estágio de projeto, como aumentar a altura efetiva da laje, a taxa de armadura de 

flexão, a resistência do concreto, entre outros parâmetros. O objetivo deste estudo é avaliar 

qual modelo de regressão melhor se ajusta ao conjunto de dados e compará-lo com as normas 

ACI 318 (2011), EUROCODE 2 (2004) e NBR 6118 (2014). Além disso, busca-se entender a 

influência das variáveis na previsão da resistência à punção. O dataset utilizado abrange 373 

ensaios experimentais de diversos pesquisadores. Foram realizadas análises usando diferentes 

normas e modelos de aprendizado de máquina. Entre os modelos de aprendizado de máquina 

avaliados, o modelo polinomial apresentou os melhores resultados, demonstrando um 

coeficiente de determinação superior em relação às normas e outros modelos de regressão. 

Além disso, manteve uma previsão consistente da resistência à punção ao longo da 

aleatoriedade dos dados. 

 

Palavras-chave: Aprendizado de máquina; regressão; laje lisa; concreto armado. 

  



 
 

ABSTRACT 

SANTOS, D. F. A. Machine learning in predicting punching shear resistance of 

reinforced concrete flat slabs. 2023. 93 f. Trabalho de conclusão de curso (MBA em 

Inteligência Artificial e Big Data) – Instituto de Ciências Matemáticas e de Computação, 

Universidade de São Paulo, São Carlos, 2023. 

 

Flat slabs are susceptible to a type of brittle failure known as punching. To avoid this abrupt 

failure, which can occur suddenly, it is possible to adopt several measures at the design stage, 

such as increasing the effective height of the slab, the flexural reinforcement ratio, the 

concrete strength, among other interruptions. The objective of this study is to evaluate which 

regression model best fits the data set and compare it with the ACI 318 (2011), EUROCODE 

2 (2004) and NBR 6118 (2014) standards. Furthermore, we seek to understand the influence 

of variables in predicting puncture resistance. The dataset used covers 373 experimental trials 

from different researchers. Analyzes were carried out using different standards and machine 

learning models. Among the machine learning models evaluated, the polynomial model 

presented the best results, demonstrating a superior coefficient of determination in relation to 

norms and other regression models. Furthermore, it maintained a consistent prediction of 

puncture resistance throughout the data randomization. 

 

Keywords: Machine Learning;regression;flat slab;reinforced concrete.  
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1 INTRODUÇÃO 

 

As lajes lisas ou lajes planas, são denominadas desta forma, devido ausência de vigas 

no sistema estrutural, passando as lajes se apoiarem diretamente sobre os pilares. Este sistema 

possui diversas vantagens, como a facilidade nas instalações prediais, versatilidade 

geométrica, diminuição das cargas na fundação, pé esquerdos menores, consequentemente 

mais andares, entre outros. Mas, como todo sistema apresenta algumas desvantagens, por 

eliminar os pórticos são mais suscetíveis a instabilidade global, além de serem propícios a um 

tipo de ruptura denominado punção. 

A punção consiste em um modo de ruptura que ocorre em elementos de concreto 

armado devido a esforços de cisalhamento causados por cargas concentradas transversais ao 

plano do elemento. Estão sujeitos a esse tipo de ruptura as lajes lisas (apoiadas diretamente 

sobre os pilares), sapatas e blocos de fundação em geral. O mecanismo de ruptura se 

caracteriza por uma elevada concentração de tensões e deformações em torno da carga 

concentrada, que ocasionam a formação de uma superfície de ruptura em forma de cone, 

conforme ilustrado na Figura 1. 

A verificação à punção é de grande importância em projetos estruturais com sistemas 

de lajes lisas. Geralmente, o procedimento consiste em verificar a resistência à punção das 

ligações laje-pilar, definida a partir de uma tensão de cisalhamento resistente atuante em uma 

superfície de controle situada a uma determinada distância das faces do pilar. 

 

Figura 1 – Punção em ligação laje-pilar segundo a NBR 6118 (2014). 

 

Fonte: NBR 6118 (2014) 

 

De acordo com GUANDALINI (2006), a punção representa um tipo abrupto de falha, 

caracterizada por cisalhamento, que pode ocorrer como resultado da aplicação de uma carga 

concentrada em uma área específica, geralmente associada à reação de um pilar ou a uma 

força concentrada. A resistência à punção de lajes lisas de concreto armado pode ser 
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sensivelmente afetada por diversos parâmetros, tais como a resistência à compressão do 

concreto, a taxa de armadura de flexão, bem como as características geométricas e a espessura 

da laje. 

Este tipo de ruptura casou acidentes em alguns lugares pelo mundo a fora, por 

exemplo, o edifício garagem Pipers Row Car Park – construído em 1965 na cidade de 

Wolverhapton, Inglaterra – teve o colapso de uma de suas lajes em 1997. De acordo com 

Wood (1997), um pedaço de 225m² da laje superior colapsou devido a ruptura inicial de uma 

das ligações laje-pilar e que levou outras oito ligações a sofrerem o mesmo efeito 

posteriormente. Já na cidade de Atlantic City, nos Estados Unidos, em 2003, ocorreu o 

colapso do Cassino Tropicana, ainda em fase construtiva, levando a quatro vítimas fatais e 

mais de 30 feridos. Outro grave acidente ocorreu em 2013, com o desabamento de parte da 

obra do Shopping Rio Poty, em Teresina, PI, conforme apresentado na Figura 2. 

 

Figura 2 – Acidentes causados pela ruptura à punção 

 
a) Pipers Row Car Park (WOOD, 1997) 

 
b) Shopping Rio Poty (OLIVEIRA et al., 

2013) 

 

1.1 Justificativa 

 

A punção tem sido um foco de inúmeros estudos devido aos riscos associados a esse 

modo de ruptura, incluindo a possibilidade de colapso progressivo. Há uma vasta quantidade 

de resultados experimentais disponíveis sobre o tema, mas ele continua sendo amplamente 

debatido na comunidade científica. Vários parâmetros podem afetar a resistência à punção de 

lajes lisas de concreto e devem ser levados em consideração em estimativas teóricas de 

projeto, que muitas vezes se baseiam em modelos empíricos desenvolvidos com base em 

evidências experimentais. Portanto, o uso de aprendizado de máquina para prever a resistência 

à punção de lajes lisas pode ser uma abordagem interessante, especialmente porque as 
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formulações normativas são empíricas, e modelos de regressão linear podem ajudar a 

compreender a influência desses parâmetros e a prever essa resistência com maior precisão. 

 

1.2 Objetivos 

 

1.2.1 Objetivo Geral 

 

Este estudo tem como objetivo geral analisar o desempenho comparativamente dos 

critérios normativos de dimensionamento à punção de lajes lisas e modelos de Machine 

Learning (ML), tendo como referência as normas ACI 318 (2014), EUROCODE 2 (2004) e 

ABNT NBR 6118 (2014), baseando os resultados experimentais disponíveis em dataset. 

 

1.2.2 Objetivo Específicos 

 

• Estimar a capacidade resistente de lajes lisas através das normas ABNT NBR 

6118 (2014), ACI 318 (2019) e Eurocode (2004), comparando com os 

resultados experimentais do dataset; 

• Analisar a influência dos parâmetros que contribuem na resistência à punção 

de lajes lisas adotando métodos de aprendizado de máquina baseados em 

regressão; 

• Comparar o desempenho de diferentes modelos de aprendizado de máquina 

adotados na previsão da resistência à punção; 

• Estimar a capacidade resistente utilizando os modelos propostos de regressão 

linear e redes neurais artificias, comparando-os com os resultados obtidos 

experimentalmente; 

• Comparar o modelo de regressão que apresentar melhor desempenho com os 

modelos de cálculo normativos. 

 

1.3 Estrutura da monografia 

 

Este estudo está estruturado em seis capítulos. O primeiro capítulo abrange a 

introdução, justificação e objetivos da pesquisa. O Capítulo 2 inicia com uma descrição do 

comportamento e dos parâmetros que exercem influência sobre a resistência à punção. Em 
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seguida, são detalhados os modelos de cálculo propostos pelas recomendações normativas 

ACI 318 (2014), EUROCODE 2 (2004) e NBR 6118 (2014). O capítulo 3 apresenta uma 

explanação sobre o conceito de aprendizado de máquina, os diversos modelos de regressão 

considerados neste estudo e as métricas de desempenho adotadas para a avaliação desses 

modelos. No capítulo 4, é fornecida uma descrição da metodologia adotada, englobando os 

métodos de coleta de dados, cálculos e análises. O capítulo 5 concentra-se nas análises 

realizadas com o conjunto de dados, considerando diferentes recomendações normativas e 

modelos de regressão. Por último, o capítulo 6 engloba as conclusões do estudo e sugere 

direções para trabalhos futuros. 
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2 DIMENSIONAMENTO DE LAJES LISAS À PUNÇÃO 

 

Neste capítulo, abordam-se aspectos relacionados ao comportamento estrutural de 

lajes lisas, os parâmetros que exercem influência na resistência à punção destas. E por fim, 

são apresentados modelos para estimar essa resistência, seguindo as diretrizes das normas 

ACI 318 (2014), EUROCODE 2 (2004) e NBR 6118 (2014). 

 

2.1 Comportamento estrutural das lajes lisas 

 

O processo de ruptura por punção em uma laje plana com um pilar central, conforme 

descrito por HOLANDA (2002), tem seu início quando a laje é submetida a carregamentos, 

resultando na formação de uma fissura tangencial ao redor do pilar. Essa fissura, corresponde 

a uma fissura de flexão provocada pelos momentos negativos atuantes na direção radial. À 

medida que os momentos fletores negativos se desenvolvem na direção tangencial e a carga 

aplicada à laje aumenta, fissuras radiais começam a se formar. Essas se propagam em direção 

às bordas da laje devido às tensões de tração tangencial. Próximo a ruptura, surgem fissuras 

tangenciais mais uma vez, mas em uma região mais afastada da área carregada. Essas fissuras 

são ocasionadas pelas tensões de flexão e cisalhamento e, eventualmente, levam à ruptura por 

punção (ver Figura 3). Conforme observado por BROMS (2005), a ruptura por punção 

apresenta semelhanças com a ruptura por cisalhamento de uma viga, caracterizando-se por 

uma fissura de cisalhamento que se estende das extremidades do pilar até a face superior da 

laje, assumindo a forma de um tronco de cone. 

 

Figura 3– Etapas de desenvolvimento de fissuras de punção. 1) formação de fissura tangencial devido 

a tensões radiais; 2) formação de fissuras radiais devido as tensões tangenciais; 3) estágio final da 

ruptura por punção em laje lisa. 

 
1)  

 
2)  



36 
 

 
3)  

Fonte: Adaptado de BROMS (2005). 

 

2.2 Parâmetros que influenciam na resistência à punção 

 

As evidências experimentais disponíveis apontam que a resistência à punção é 

principalmente influenciada pela resistência à compressão do concreto (fc), pela taxa de 

armadura de flexão tracionada (ρ), pelas dimensões e geometria do pilar e pelo efeito de 

escala (ξ), que se traduz na redução da tensão resistente ao cisalhamento da laje à medida que 

a altura útil (d) aumenta. Embora o uso de armaduras de cisalhamento tenha se mostrado 

eficaz ao longo do tempo e tenha várias vantagens comprovadas por diversas pesquisas, é 

importante observar que este estudo se concentra exclusivamente em lajes planas sem o uso 

de armadura de cisalhamento. 

 

2.2.1 Resistência à Compressão do Concreto 

 

A ruptura à punção de uma estrutura de concreto sem armadura de cisalhamento é 

influenciada, entre outros fatores, pela resistência à tração do concreto. A resistência à tração 

torna-se um parâmetro crítico, uma vez que a punção envolve uma ruptura por tração 

diagonal. Tanto formulações normativas quanto pesquisas experimentais geralmente 

relacionam a resistência à tração do concreto como uma função de sua resistência à 

compressão. De acordo com ANDRA e MATTHAEI (2000), à medida que ocorre o aumento 

das fissuras, os tirantes se rompem gradualmente, resultando na formação de uma angulação, 

conforme ilustrado na Figura 4. 
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Figura 4– Modelo de Biela e Tirantes para punção em laje lisa 

 

a) sem fissuras 

 

b) com fissuras 

Fonte: ANDRA e MATTHAEI (2000). 

 

2.2.2 Taxa de Armadura de Flexão Tracionada 

 

Este parâmetro é definido como a razão entre a área de armadura de flexão tracionada 

(As) pela área de concreto (Ac), onde a área de concreto é calculada multiplicando a altura 

útil da laje (d) por uma determinada largura. A norma EUROCODE 2 (2004) aborda a 

contribuição da taxa de armadura de flexão na resistência à punção por meio da raiz cúbica da 

taxa de armadura. No entanto, a norma sugere que o ganho de resistência à punção é mínimo 

para taxas de armadura superiores a 2%, algo que a norma brasileira NBR 6118 (2014) não 

leva em consideração. Tanto o ACI 318 (2014) quanto a norma canadense CSA A23.03 

(2004) não incorporam esse parâmetro na estimativa da resistência à punção. 

Com base em evidências experimentais, pesquisadores como REGAN (1986) 

argumentam que a taxa de armadura desempenha um papel importante na estimativa da 

resistência à punção. Elementos com uma maior taxa de armadura possuem uma zona 

comprimida expandida, o que resulta em mais concreto sem fissuras capazes de resistir ao 

cisalhamento, como ilustrado na Figura 5. Além disso, a abertura das fissuras de flexão é 

reduzida, facilitando a transferência de forças através do engrenamento de agregados e 

potencialmente aumentando o efeito pino. 
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Figura 5 – Comparação da taxa de armadura de flexão a) menor taxa e b) maior taxa. 

 

a) Taxa de armadura de flexão menor 

 

b) Taxa de armadura de flexão maior 

Fonte: Adaptado de REGAN (1986). 

 

2.2.3 Geometria e Dimensões do pilar 

 

Este parâmetro exerce uma influência significativa na resistência à punção, pois afeta 

a distribuição das tensões na ligação entre a laje e o pilar. Mesmo que o perímetro de controle 

aumente com o aumento da seção de um pilar quadrado, MOE (1961) identificou uma 

concentração de esforços cortantes nos cantos do pilar quadrado ao medir as deformações 

verticais no pilar, próximo à superfície da laje (ver Figura 6). 

 

Figura 6- Deformações verticais nos pilares da laje R2 de Moe 

 

Fonte: Adaptado de MOE (1961). 

 

VANDERBILT (1972) conduziu uma série de experimentos envolvendo lajes 

apoiadas em pilares quadrados e circulares, com o objetivo de avaliar como as dimensões dos 
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pilares afetam a resistência à punção. O parâmetro principal considerado foi a razão entre o 

perímetro do pilar e a altura útil da laje (u0/d). Suas observações indicaram que as lajes 

apoiadas em pilares circulares apresentaram uma maior resistência à tensão cisalhante em 

comparação com aquelas apoiadas em pilares quadrados de igual perímetro. Essa diferença foi 

atribuída à distribuição mais uniforme das tensões nas conexões entre a laje e o pilar circular. 

HAWKINS et al. (1971) realizaram estudos sobre variações na razão entre o maior e o 

menor lado do pilar (Cmax/Cmin) na faixa de 2,0 a 4,3. Suas conclusões indicaram que, 

quando essa razão excede dois, a tensão nominal de cisalhamento diminui à medida que a 

razão entre os lados aumenta. Com base nesses resultados, o ACI 318 (2014) considera que o 

índice de regularidade dos pilares (μ) pode reduzir em mais da metade a tensão nominal de 

cisalhamento nas proximidades dos pilares. 

SAGASETA et al. (2014) realizaram análises computacionais não lineares e 

observaram que, em lajes com uma relação C/d igual a 1, a concentração dos esforços nas 

bordas dos pilares não é tão evidente quanto em lajes com C/d igual a 4. Isso sugere que o 

fenômeno tem diferentes graus de influência, dependendo das variações na relação C/d, como 

ilustrado na Figura 7. 

 

Figura 7- Campo de tensões e distribuição de esforções normais no perímetro de 0,5d do pilar 

  

a) C/d= 1 b) C/d = 4 

Fonte: SAGASETA et al. (2014) 

 

2.2.4 Efeito escala (Size effect) 

 

De acordo com BAZANT (1984), materiais que experimentam ruptura frágil exibem 

um fenômeno conhecido como efeito de escala, no qual a resistência diminui à medida que o 

tamanho do elemento é variado. RICHART (1948) foi um dos pioneiros a investigar esse 
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fenômeno e propor formulações para descrevê-lo. As normas EUROCODE 2 (2004) e NBR 

6118 (2014) sugerem que esse parâmetro deve ser estimado usando a fórmula 1+(200/d)1/2. 

No entanto, a Eurocode impõe um limite de 2,0 para o resultado dessa estimativa de 

resistência à punção. Essa limitação tem sido objeto de debate entre os pesquisadores, pois 

argumentam que não há base sólida para impor tal restrição. Por outro lado, a norma CSA 

23.03 (2004) recomenda que o efeito de escala seja calculado por meio da fórmula 

1300/(1000+d), com um limite de 1,0. É importante notar que o efeito de escala é 

influenciado pelo aumento da altura útil da laje; quanto maior o elemento, menor é a 

contribuição desse parâmetro na resistência à punção, como ilustrado na Figura 8. 

 

Figura 8- Efeito de escala (sizeeffect) em sapatas com dimensões diferentes. 

 

a) laje de maior dimensão 

 

b) laje de menor dimensão 

 

2.3 Métodos para estimar a resistência à punção 

 

Nesta seção, são discutidos diversos métodos teóricos disponíveis na literatura para 

estimar a resistência à punção. Esses métodos foram desenvolvidos com base em evidências 

experimentais disponíveis na época. Além disso, são apresentados modelos empíricos que são 

adotados por normas de projeto, incluindo a ACI 318 (2014), o EUROCODE 2 (2004) e a 

NBR 6118 (2014). 

 

2.3.1 Recomendações da norma ACI 318 (2014) 

 

De acordo com o ACI 318 (2014), a análise da resistência à punção em lajes lisas 

envolve a verificação das tensões de cisalhamento em um perímetro de controle localizado a 

uma distância d/2 das faces do pilar ou das extremidades da área carregada, conforme 

ilustrado na Figura 9. A resistência à punção em elementos desprovidos de armadura de 
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cisalhamento é calculada com base nas Equação 1 a 3, sendo considerado o valor mínimo 

entre elas. 

 

Figura 9 - Modelo para verificação da resistência à punção do ACI 318 

 

Fonte: ACI 318 (2014). 

 

𝑉𝑅,𝑐 = (1 +
2

𝛽𝑐
) .
1

6
 . √𝑓𝑐′ . 𝑢1 . 𝑑  Equação 1 

  

𝑉𝑅,𝑐 = (2 +
∝𝑠 . 𝑑

𝑏0
) .

1

12
 . √𝑓𝑐′ . 𝑢1 . 𝑑  Equação 2 

  

𝑉𝑅,𝑐 = 
1

3
 . √𝑓𝑐′ . 𝑢1 . 𝑑  Equação 3 

 

Onde: 

𝛽𝑐 é a razão entre a maior e a menor dimensão do pilar;  

∝𝑠 é uma constante que assume valor igual a 40 para o caso de pilares internos, 30 

para pilares na borda e 20 para pilares no canto. 

𝑓𝑐′ é a resistência à compressão do concreto, e é limitada em no máximo 69 MPa; 

𝑢1 é o comprimento de um perímetro de controle afastado à d/2 da face do pilar;  

𝑑 é a altura útil da laje; 

 

2.3.2 Recomendações da norma EUROCODE 2 (2004) 

 

O EUROCODE 2 (2004) recomenda que para verificar a resistência a punção em lajes 

lisas de concreto armado sem armadura de cisalhamento é necessário fazer um perímetro de 

controle afastado 2d da face do pilar ou área carregada, sendo o perímetro de controle 
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determinado conforme ilustrado na Figura 10. Na estimativa da resistência à punção adota-se 

a Equação 4. 

 

Figura 10 - Perímetro de controle para o EUROCODE 2 

 

Fonte: EUROCODE 2 (2004) 

 

𝑉𝑅,𝑐 = 0,18 .  𝜉 .  (100 . ⍴ . 𝑓
′𝑐)1/3.  𝑢1 . 𝑑 ≥ 𝑣𝑚𝑖𝑛 .  𝑢1 . 𝑑 Equação 4 

 

Onde:  

u1 é o comprimento do perímetro de controle afastado 2d das faces do pilar; 

d é a altura útil da laje. 

1 200 2,0= + k d
 

2,0  =  x y  é a taxa de armadura de flexão tracionada da sapata, onde ⍴x e ⍴y 

são as taxas nas direções x e y, respectivamente. Nos cálculos, devem ser consideradas as 

barras dentro de uma região afastada 3d das faces do pilar; 

fc é a resistência à compressão do concreto, que segundo o EUROCODE 2 (2004), 

deve ser menor que 90 MPa, porém respeitando-se os limites estabelecidos pelos anexos de 

cada país; 

Esta norma ainda recomenda a verificação da resistência da biela comprimida próxima 

das extremidades do pilar, obtido pela Equação 5. Sendo 𝑢0 o perímetro do pilar. 

 

𝑉𝑅,𝑚𝑎𝑥 = 0,30 .  𝑓′𝑐  .  (1 −
𝑓′𝑐
250

) . 𝑢0 .  𝑑 
Equação 5 

 

2.3.3 Recomendações da norma ABNT NBR 6118 (2014) 

 

O modelo empírico adotado pela norma brasileira para avaliar a resistência ao 

cisalhamento em lajes lisas guarda semelhanças com o EUROCODE 2 (2010) para lajes. A 
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análise da resistência à punção em lajes lisas deve considerar os perímetros de controle: u0, 

para a verificação da resistência à compressão da biela próxima ao pilar, e u1, para a 

verificação da resistência à tração diagonal. As discrepâncias entre os dois modelos são 

mínimas e podem ser exemplificadas pelo cálculo do size effect, que, na norma brasileira, não 

é limitado a um valor máximo de 2,0. Além disso, a taxa de armadura de flexão não é restrita 

e pode exceder 2%. 

No caso da Equação 6, a norma brasileira permite um aumento de até 20% no valor de 

Vmax quando se trata de pilares internos, desde que os vãos que se conectam a esse pilar não 

diferem em mais de 50% e não existem aberturas próximas ao pilar. 

 

𝑉𝑅,𝑚𝑎𝑥 = 0,27 .  𝑓′𝑐  .  (1 −
𝑓′𝑐
250

) . 𝑢0 .  𝑑 
Equação 6 
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3 APRENDIZADO DE MÁQUINA 

 

Neste capítulo é apresentado os conceitos de Aprendizado de Máquina, um ramo da 

inteligência artificial, especificamente os algoritmos de regressão. Neste estudo foram 

utilizados os seguintes modelos de regressão: LINEAR, ROBUST, LASSO, RIDGE, 

ELASTIC NET, POLYNOMIAL, STOCHASTIC GRADIENT DESCENT, GRADIENT 

BOOSTING, XGBOOST, RANDOM FOREST, SUPPORT VECTOR MACHINE E REDES 

NEURAIS ARTIFICIAS. 

 

3.1 Aprendizado de Máquina 

 

O aprendizado de máquina (AM) é uma área da inteligência artificial cujo objetivo é 

identificar padrões em dados fornecidos e usá-los para fazer previsões (MECHELLI et al., 

2019). 

Nas últimas décadas, com o crescimento da complexidade dos problemas que devem 

ser tratados computacionalmente e do volume de dados gerados, tornou-se clara a necessidade 

de ferramentas computacionais mais rebuscadas, que fossem mais independentes, reduzindo, 

então, a necessidade de intervenção humana (FACELI et al., 2011). Os algoritmos de AM 

aprendem a induzir uma função ou hipótese capaz de resolver um problema a partir de dados 

que representam instâncias do problema a ser resolvido. Esses dados formam um conjunto, 

denominado dataset (conjunto de dados), na engenharia civil é costume denominar banco de 

dados. 

O dataset é formado por valores característicos ou atributos que descrevem seus 

principais aspectos, também chamados de campos ou variáveis. Para algumas tarefas de 

aprendizado, um dos atributos é classificado como um atributo de saída (também chamado 

atributo meta, atributo alvo ou variável dependente), cujo valores podem ser estimados 

através dos valores dos demais atributos (também chamados atributos previsores ou variáveis 

independentes) (FACELI et al., 2011). 

A forma com que os dados são apresentados gera uma influência sobre qual modelo de 

algoritmo de AM deve ser utilizado. Eles são divididos principalmente em quatro categorias: 

aprendizado supervisionado, aprendizado não supervisionado, aprendizado semi-

supervisionada e aprendizado por reforço (MOHAMMED et al., 2016). 
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No aprendizado supervisionado o objetivo é inferir uma função ou mapeamento de 

dados de treinamento rotulados. Dois grupos ou categorias de algoritmos estão sob o conjunto 

de aprendizado supervisionado: classificação e regressão, sendo esta última categoria a de 

interesse deste estudo. Já no aprendizado não supervisionado faltam supervisores, ou seja, os 

dados não são rotulados. O objetivo é encontrar uma estrutura oculta nestes dados (SARKER, 

2021). 

No aprendizado semi-supervisionado, os dados fornecidos são uma mistura de dados 

rotulados e não rotulados. Esta combinação é usada para gerar um modelo apropriado para a 

classificação/regressão de dados. O alvo do aprendizado semi-supervisionado é aprender um 

modelo que irá prever classes de dados de teste futuros melhores do que a partir do modelo 

gerado usando apenas os dados rotulados. Por outro lado, o aprendizado por reforço norteia-se 

nas observações recolhidas a partir da interação com o meio ambiente para realizar ações que 

maximizem a recompensa ou minimizem o risco (SARKER, 2021). 

Geralmente, a implementação do aprendizado de máquina tem quatro etapas: (a) 

dividir o banco de dados em conjunto de treinamento e conjunto de teste; (b) aplicar o 

conjunto de treinamento para ajustar o modelo preditivo; (c) verificar se os requisitos de 

precisão são atendidos; d) emitir o modelo predito para teste ou ajustar os valores dos 

hiperparâmetros (SHEN et al., 2022). 

 

3.2 Modelos de regressão 

 

Assim como foi dito anteriormente, o aprendizado supervisionado se divide em duas 

categorias: classificação e regressão. É importante distingui-las com base em suas 

características principais. A modelagem de classificação visa estimar uma função que mapeia 

variáveis de entrada X para saídas discretas, como rótulos ou categorias. Por outro lado, a 

modelagem de regressão também estima uma função de mapeamento a partir de variáveis de 

entrada X, mas para uma saída contínua, ou seja, um valor real, inteiro ou de ponto flutuante 

(BROWNLEE, 2017). Nesta seção, apresentamos os algoritmos usados neste estudo, com 

foco nos modelos de regressão, que são o principal foco deste trabalho. 

A regressão linear é um algoritmo amplamente utilizado em análise preditiva, sendo 

comum em projetos de previsão. Quando envolve apenas um preditor (variável), denomina-se 

regressão linear simples, e para várias variáveis preditoras, é chamada de regressão linear 

múltipla. Em essência, a regressão linear emprega funções preditoras lineares, cujos valores 

são estimados com base nos dados do modelo. Os modelos lineares são os métodos 
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paramétricos mais simples e mesmo assim são amplamente adotados na ciência de dados, pois 

muitos problemas, mesmo aqueles que não são intrinsecamente lineares, podem ser abordados 

com sucesso por meio desses modelos. Como mencionado anteriormente, a regressão é uma 

técnica de previsão adequada quando a variável de destino é contínua, e ela encontra diversas 

aplicações. Portanto, é importante compreender como um modelo linear se ajusta aos dados, 

suas vantagens e desvantagens, e quando pode ser preferível considerar outras abordagens. 

 

3.2.1 Métodos de Regularização (RIDGE, LASSO E ELASTIC NET) 

 

Vários métodos de regressão linear foram desenvolvidos com o propósito de criar 

modelos regulares. Dentre eles, destacam-se os modelos RIDGE, LASSO e ELASTIC NET. 

A abordagem que utiliza métodos de regularização envolve a construção de um 

modelo que incorpora todos os preditores, porém reduz os coeficientes estimados em relação 

às estimativas obtidas pelo método dos mínimos quadrados. Esse processo, conhecido como 

encolhimento, visa reduzir significativamente a variância, porém pode resultar em um 

aumento no viés do modelo. Dependendo do tipo de regularização aplicada, alguns 

coeficientes podem ser estimados como exatamente zero, possibilitando a seleção de variáveis 

(PASSOS, 2014). 

Em uma regressão linear, os coeficientes são estimados por meio do ajuste de mínimos 

quadrados, com objetivo de minimizar a Soma dos Quadrados dos Erros (SEQ), conforme 

Equação 3.1. Quando se aplica penalização a uma regressão, introduz-se uma penalização nos 

parâmetros do modelo. Isso é feito com o objetivo de minimizar tanto a SEQ, quanto os 

valores absolutos dos coeficientes. Geralmente, essa penalização é direcionada aos parâmetros 

que têm valores muito elevados, evitando que um parâmetro tenha um valor excessivamente 

alto (PASSOS, 2014). 

 

𝑆𝐸𝑄 =∑(𝑌𝑖 − 𝑌𝑖)²

𝑛

𝑖=1
 

Equação 3.1 

 

A regressão Ridge, também conhecida como penalização L2, implica na penalização 

dos coeficientes de forma quadrática, visando reduzir a Soma dos Quadrados dos Erros (SEQ) 

(conforme Equação 3.1) enquanto busca estimativas de coeficientes que se ajustem bem aos 

dados. 
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Em comparação com o método de mínimos quadrados, a vantagem da regressão Ridge 

está diretamente relacionada à compensação entre viés e variância. No caso de mínimos 

quadrados, as estimativas têm baixo viés, mas podem sofrer de alta variância, o que significa 

que pequenas variações nos dados de treinamento podem resultar em grandes alterações nas 

estimativas dos coeficientes. A regressão Ridge é mais eficaz em situações em que as 

estimativas de mínimos quadrados têm alta variância. É importante notar que, ao contrário de 

alguns métodos que selecionam modelos contendo apenas um subconjunto dos preditores, a 

regressão Ridge inclui todos os preditores no modelo final, o que pode ser visto como uma 

desvantagem desse método (HASTIE et al., 2013). 

Conforme descrito por KULAIF (2014), o método de Regressão Ridge penaliza a 

norma ℓ2 do vetor wk. Em contrapartida, o LASSO utiliza a norma ℓ1 do vetor wk em vez da 

norma ℓ2. Isso resulta em uma seleção de coeficientes de regressão, que, no contexto deste 

estudo, se traduz em ativações de neurônios na camada intermediária. O LASSO zerará os 

coeficientes menos relevantes para a tarefa de regressão, como demonstrado na Equação 3.2. 

 

𝑚𝑖𝑛𝑤𝑘‖𝐻𝑤𝑘−𝑠𝑘‖2
2 + 𝑐𝑘‖𝑤𝑘‖1 

Equação 3.2 

 

O ELASTIC NET surgiu como uma abordagem intermediária entre o RIDGE e o 

LASSO. Inicialmente, a ELASTIC NET foi desenvolvida para resolver o problema do 

LASSO, que não lida bem com a multicolinearidade entre os regressores (ZOU e HASTIE, 

2005). O ELASTIC NET lida com a previsão de grupos de variáveis correlacionadas, 

superando uma limitação do LASSO, que tende a selecionar arbitrariamente uma variável 

entre as altamente correlacionadas. 

ELASTIC NET é uma combinação convexa de RIDGE, com a penalização da norma 

ℓ2, e de LASSO, com a penalização da norma ℓ1, como é possível observar na formulação da 

Equação 3.3, onde [0,+1] k. 

 

𝑚𝑖𝑛𝑤𝑘‖𝐻𝑤𝑘−𝑠𝑘‖2
2 + 𝑐𝑘 [(1 − 𝛼𝑘)‖𝑤𝑘‖2

2
+ 𝛼𝑘‖𝑤𝑘‖1

]
 

Equação 3.3 

 

3.2.2 Regressão Robusta 

 

Dado que é comum encontrar outliers em conjuntos de dados, a escolha de 

implementar algoritmos de regressão robustos para modelagem pode ser considerado uma 
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decisão sensata. Essa abordagem também pode ser necessária quando se sabe que os resíduos 

não seguem uma distribuição normal ou têm uma distribuição desconhecida (SUSANTI et al., 

2014). Huber e Ronchetti (2009, p. 8) mencionam que um dos objetivos do uso de métodos 

robustos “é resguardar contra desvios das suposições, em particular contra aqueles que estão 

próximos ou abaixo dos limites de detectabilidade”. 

 

3.2.3 Regressão Polinomial 

 

Segundo SALEH (2022) a regressão polinomial é uma técnica baseada em um truque 

que permite o uso de modelos lineares mesmo quando o conjunto de dados possui fortes não 

linearidades. A ideia é adicionar algumas variáveis extras calculadas a partir das existentes e 

usando apenas combinações polinomiais (Equação 3.4). 

 

𝑦𝑘 = 𝛼0 +∑𝛼𝑖𝑥𝑘
𝑖 +

𝑚

𝑖=1

∑ 𝛼𝑗𝑓𝑝𝑗(𝑥𝑘
1, 𝑥𝑘

2

𝑚

𝑗=𝑚+1

, … , 𝑥𝑘
𝑚)

 
Equação 3.4 

 

Na expressão anterior, todo fPj(•) é uma função polinomial de um único recurso. Por 

exemplo, com duas variáveis, é possível estender para um problema de segundo grau 

transformando o vetor inicial (cuja dimensão é igual a m) em outro de maior 

dimensionalidade (cuja dimensão é k > m): 

 

𝑥 = (𝑥1, 𝑥2) → 𝑥𝑡 = (𝑥1, 𝑥2, 𝑥1
2, 𝑥2

2, 𝑥1, 𝑥2) 
Equação 3.5 

 

3.2.4 Random Forest (RF) 

 

As árvores de decisão, conhecidas como "decision trees," apresentam uma limitação 

que as torna menos ideais para tarefas de aprendizado preditivo, que é a sua tendência à 

imprecisão. Nesse contexto, o algoritmo Random Forest surge como uma abordagem 

aprimorada em relação às árvores de decisão, pois combina múltiplas árvores para criar um 

modelo mais preciso e robusto. A ideia fundamental por trás do Random Forest, ou "floresta 

aleatória," consiste em criar um conjunto de árvores de decisão que são treinadas em 

diferentes subconjuntos dos dados e, posteriormente, combinar as previsões dessas árvores 

para produzir uma previsão final (HASTIE, TIBSHIRANI e FRIEDMAN, 2013). 
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A Floresta Aleatória é um dos algoritmos mais amplamente utilizados em aprendizado 

supervisionado devido à sua simplicidade em tarefas de classificação e regressão. Trata-se de 

um ensemble, ou seja, envolve a combinação de vários classificadores para melhorar os 

resultados. O algoritmo opera criando amostras aleatórias a partir do conjunto de treinamento, 

em que cada nova árvore é gerada usando uma amostra aleatória e um subconjunto aleatório 

de atributos. Dentre esses atributos aleatórios, é selecionado um atributo mais representativo 

para ser utilizado como critério de decisão. Esse procedimento resulta em uma grande 

diversidade de árvores, o que geralmente leva à criação de modelos mais robustos (OSHIRO, 

2013). 

De acordo com BREIMAN (2001), o criador do algoritmo, o Random Forest é eficaz 

tanto em tarefas de classificação quanto de regressão. Ele se baseia na utilização de várias 

árvores de decisão e no conceito de bagging (bootstrap aggregating) para melhorar a precisão 

e mitigar o overfitting. O bagging envolve a amostragem dos dados para criar diversos 

subconjuntos a partir do conjunto de treinamento original. Ao treinar cada árvore em um 

subconjunto diferente dos dados e combinar as decisões de cada árvore, a Floresta Aleatória é 

capaz de melhorar a precisão do modelo. 

A Figura 11 ilustra a estrutura de uma Árvore de Decisão (AD). Inicialmente, a AD é 

composta pelo nó raiz, que representa o ponto mais elevado na hierarquia da imagem. A partir 

desse nó raiz, ocorre a ramificação para os nós filhos. Os nós que não têm filhos são 

denominados nós folha ou terminais (LIMA e AMORIM, 2020). Cada nó, ou retângulo 

apresentado na figura, contém uma pergunta. O fluxo dos dados ocorre em direção às folhas, 

partindo da raiz, e cada folha oferece uma decisão ou rótulo. 
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Figura 11–Exemplo de árvore de regressão 

 

Fonte: PIANUCCI e PITOMBO (2019) 

 

3.2.5 eXtreme Gradient Boosting (XGBoost) 

 

O XGBOOST é um algoritmo de aprendizado de máquina que se baseia no método de 

gradient boosting e é aplicável tanto a tarefas de classificação quanto de regressão. Esse 

modelo utiliza árvores de decisão que são agregadas por meio das técnicas de bagging e 

boosting. No método de bagging, são gerados subconjuntos de árvores de decisão, que são 

combinados para fazer previsões. Essas árvores são construídas a partir de amostras bootstrap 

do conjunto de dados original, como descrito por (JAMES et al., 2009). No entanto, mesmo 

com a utilização de diferentes amostras para criar árvores distintas, os subconjuntos tendem a 

ser semelhantes. Para mitigar esse problema, apenas um subconjunto das características do 

modelo é utilizado na construção de cada árvore, de forma semelhante ao que ocorre em uma 

RF. A decisão final é obtida pela agregação das saídas de várias árvores de decisão, conforme 

mencionado por (CHEN e GUESTRIN, 2016). 

O método boosting, por sua vez, é introduzido no algoritmo através da construção 

inicial de uma árvore com alto viés e baixa variância, ou seja, com um alto grau de 

overfitting. Posteriormente, as árvores subsequentes são construídas de maneira a aprimorar a 

árvore anterior, reduzindo gradualmente o overfitting a cada iteração do processo de ajuste. É 

a combinação dessas técnicas que permite ao XGBOOST operar eficazmente com grandes 
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volumes de dados, usando menos recursos computacionais em comparação com outros 

modelos. Essa abordagem é amplamente adotada por cientistas de dados para alcançar 

resultados de alta qualidade em diversos desafios de aprendizado de máquina (CHEN e 

GUESTRIN, 2016). 

 

3.2.6 Support Vector Machine (SVM) 

 

O princípio das Máquinas de Suporte Vetoriais ou Support Vector Machine (SVM) 

consiste em encontrar um hiperplano ótimo que separe membros e não-membros de uma 

classe em um espaço abstrato, denominado featurespace. Nesse espaço, as classes presentes 

no conjunto de treinamento se tornam linearmente separáveis, e o hiperplano ótimo é definido 

como aquele para o qual a margem de separação entre elas é maximizada. Uma propriedade 

importante das SVM está na utilização de kernels. Os kernels são produtos internos das 

coordenadas de dois vetores, e são utilizados para construção do hiperplano ótimo no 

featurespace sem a necessidade de considerar a forma explicita desse, geralmente bastante 

complexa (HAYKIN 1999). 

Segundo DOSUALDO e REZENDE (2003) alguns exemplos de kernel utilizados são: 

o polinomial, o radial e o sigmoidal. Algumas vantagens apresentadas pelas SVM são: 

trabalham bem quando o conjunto de dados possui uma alta dimensão; costumam apresentar 

uma alta precisão na predição de valores; não existe o risco de encontrarem mínimos locais, 

um problema que ocorre bastante quando se trabalha com redes neurais artificiais. Uma 

desvantagem apresentada pelas SVM é que os modelos fornecidos não são facilmente 

compreensíveis ao ser humano. 

Segundo (CORTES; VAPNIK, 1995) citado por (FILHO, 2020)  algoritmo Support 

Vector Machines (SVM) é um classificador utilizado em problemas que buscam classificar 

dois grupos. Para atingir esse objetivo, o SVM implementa um modelo que recebe vetores que 

não são mapeados linearmente e os projeta em uma dimensão mais alta a fim de que possam 

ser mapeados linearmente, garantindo uma decisão. Para que isso ocorra é necessária uma 

função chamada de kernel para manipular os dados com um conjunto de funções matemáticas 

usadas no SVM, a qual geralmente transforma o conjunto de dados de treinamento de forma 

que uma superfície de decisão não linear seja capaz de se transformar em uma equação linear 

em um número maior de espaços dimensionais (BARAIK, 2020). A seguir é demonstrado 

pela Figura 12 a aplicação da função kernel e a projeção de uma dimensão acima para 

encontrar a superfície de decisão. 
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Figura 12–Aplicação da função Kernel 

 

Fonte: JAIN (2017) 

 

Às vezes, no entanto, pode ser impossível separar as duas classes corretamente, ou 

pode-se ter alguns valores discrepantes, também chamados de outliers, que estão dentro da 

margem. Quaisquer pontos classificados incorretamente ou pontos dentro da margem seriam 

penalizados. É aqui que entra o valor “folga”, denotado pela letra grega ξ. O Support Vector 

Regressor (SVR) se diferencia em alguns aspectos, de uma maneira simplificada é imaginar 

um tubo com uma função estimada (hiperplano) no meio e limites de cada lado definidos por 

ε. O objetivo do algoritmo é minimizar o erro identificando uma função que coloque mais dos 

pontos originais dentro do tubo e, ao mesmo tempo, reduza a “folga” como pode ser 

observado na Figura 13 (DOBILAS, 2020). 

 

 

Figura 13–Support Vector Regression – linha do hiperplano junto com linhas de limite definidas por 

+- epsilon 

 

Fonte: DONILAS (2020) 
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O SVM é conhecido como um dos classificadores mais poderosos, no entanto, pode 

apresentar uma alta complexidade de treinamento conforme o número de padrões, podendo 

ser limitado para grandes conjuntos de dados. Já o SVR possui a desvantagem de apresentar 

sensibilidade a ruídos e outliers (KIM et al., 2020). 

 

3.2.7 Redes Neurais Artificiais (RNAs) 

 

SARACOGLU (2008) apresenta as redes neurais artificias (RNAs) como algoritmos 

que têm elementos de processamento semelhantes a neurônios biológicos, chamados de nós 

ou neurônios artificias e conectados uns aos outros por ponderação. Os pesos para essas 

ponderações em cada conexão são ajustados dinamicamente até que a saída desejada seja 

gerada para uma determinada entrada. 

Segundo DOSUALDO e REZENDE (2003) Redes Neurais Artificiais (RNAs) são 

modelos computacionais inspirados no cérebro humano. Elas são compostas por várias 

unidades de processamento (neurônios), interligadas por um grande número de conexões 

(sinapses). 

PETERMANN (2006) apresenta as funções básicas dos neurônicos, são elas: avaliar 

valores de entrada; calcular o total para valores de entrada combinados; comparar o total com 

um valor limiar; determinar o que será a saída. 

BOSCARIOLLI et al. (2008) declara que a arquitetura de redes neurais MLP (Multi-

LayerPerceptron) consistem em uma especificação do número de camadas, tipos de função de 

ativação de cada unidade e pesos de conexões entre as diferentes unidades que devem ser 

definidas para a construção desta arquitetura neural. As redes construídas ocorrem por 

múltiplas entradas e saídas, onde as saídas dependem das funções de transferência dos pesos 

sinápticos que são ajustados pelo algoritmo de aprendizado, que ocorre com uso de um 

conjunto de padrões, conjunto de pares de entrada e saída (X. y) que definem, através de 

exemplos, o sistema a modelar. 

Segundo FENG et al. (2020) a MLP possui três tipos de camadas, sendo estas, as de 

entradas, ocultas e de saídas. A atribuição dessa rede é aprender uma função de ativação linear 

a partir de um conjunto de entradas e saídas para solucionar problemas de classificação ou 

regressão. 

A grande vantagem das RNAs sobre os outros métodos é que elas não são restritas à 

um único atributo de saída, como acontece na maioria dos casos. Portanto, podem ser 

realizadas várias regressões em uma RNA. Além disso, as RNAs são conhecidas pela alta 
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precisão na predição dos valores e são robustas diante de dados com ruído. Porém, as RNAs 

também apresentam algumas desvantagens. A primeira é que, dependendo do modelo de rede 

e do algoritmo de aprendizado, as redes neurais podem apresentar lenta convergência para 

uma solução. Isso porque a rede pode precisar ser treinada até que os pesos estejam corretos 

de modo a fornecer a saída esperada. Outra desvantagem é que as soluções por ela fornecidas 

não são facilmente interpretadas pelos usuários, pois o conhecimento está embutido nos pesos 

e conexões da rede DOSUALDO e REZENDE (2003). 

Na Figura 14 é ilustrado uma rede neural MLP de três camadas, onde a camada de 

entrada são dos dados de entrada de cada variável 𝑥, o 𝑊𝐼 = [𝑤1
𝐼 , 𝑤2

𝐼 , … , 𝑤𝑞
𝐼] e 𝑊𝑜 =

[𝑤1
𝑜, 𝑤2

𝑜 , … , 𝑤𝑞
𝑜] são, respectivamente, as matrizes de pesos de entrada e saída, enquanto 𝐵ℎ =

[𝑏1
ℎ, 𝑏2

ℎ, … , 𝑏𝑞
ℎ] é o vetor de polarização da camada oculta, 𝑏𝑜 é a polarização da camada de 

saída, e as funções 𝑓 e 𝑔 correspondem às funções de ativação das camadas oculta e de saída, 

nesta ordem (ZHANG, SUN e WU, 2019). 

 

Figura 14–Representação de uma Rede Neural MLP 

 

Fonte: ZHANG, SUN E WU (2019) 

 

O algoritmo de aprendizado profundo (deeplearning) é baseado em uma rede neural 

artificial de alimentação em várias camadas que é treinada utilizando aprendizado de 

propagação revresa (back-propagation). 

LECUN et al. (2015) afirmam que o uso de aprendizado profundo permite modelos 

computacionais compostos de múltiplas camadas de processamento aprenderem 

representações de dados com múltiplos níveis de abstração. Além disso, os autores declaram 
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que o aprendizado profundo utiliza backpropagation para indicar como uma máquina deve 

alterar seus parâmetros internos que são usados para calcular a representação em cada uma 

das camadas anteriores. 

 

3.3 Pré-processamento 

 

Os valores dos atributos de um conjunto de dados podem ser numéricos ou simbólicos. 

Podem ainda estar limpos ou conter ruídos e imperfeições, com valores incorretos, 

inconsistentes, duplicados ou ausentes, os atributos podem ser independentes ou relacionados. 

Desta forma, técnicas de pré-processamento de dados são frequentemente utilizadas para 

melhorar a qualidade dos dados por meio da eliminação ou minimização dos problemas 

citados. Essa melhora pode facilitar o uso de técnicas de AM, levar à construção de modelos 

mais fiéis à distribuição real dos dados. Neste item são apresentadas algumas técnicas, de 

forma resumida, para pré-processamento que foram adotadas neste estudo. 

 

3.3.1 Limpeza dos dados 

 

Conjunto de dados podem também apresentar dificuldades relacionadas à qualidade 

dos dados. Algumas dificuldades encontradas são dados ruidosos (que possuem erros ou 

valores que são diferentes do esperado), inconsistentes (que não combinam ou contradizem 

valores de outros atributos do mesmo objeto), redundantes (quando dois ou mais objetos têm 

os mesmos valores para dois ou mais objetos) ou incompletos (com ausência de valores para 

alguns dos atributos em parte dos dados). Dados inconsistente, redundantes ou com valores 

ausentes são de fácil detecção. A principal dificuldade está na detecção de dados ruidosos 

(FACELLI et al., 2011). 

Dados com ruídos são dados que contêm objetos que, aparentemente, não pertencem à 

distribuição que gerou os dados analisados (HAN e KAMBER, 2000). Os dados com ruídos 

podem levar a um superajuste do modelo utilizado, pois o algoritmo que induz o modelo pode 

se ater às especificidades relacionadas aos ruídos, em vez da distribuição que gerou os dados. 

Por outro lado, a eliminação destes dados, podem levar à perda de informação importante, e 

fazer com que algumas regiões do espaço de atributos não sejam consideradas no processo de 

indução de hipóteses. Um indicador da possível presença de ruído é a existência de outliers, 

que são valores que estão além dos limites aceitáveis ou são muito diferentes dos demais 
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valores observados para o mesmo atributo, representando, por exemplo, exceções raramente 

vistas (FACELLI et al., 2011). 

 

3.3.2 Transformação de dados categórico-numérico 

 

Técnicas como RNAs, SVM e vários algoritmos de agrupamento lidam apenas com 

dados numéricos. Assim, quando o conjuto de dados apresentar atributos simbólicos, os 

valores desses atributos devem ser convertidos para valores numéricos. Recursos numéricos 

fornecem melhor desempenho em algoritmos de classificação e regressão. 

As técnicas de aprendizado de máquina, em sua maioria, não podem suportar apenas 

variáveis categóricas, desta forma, são comumente codificadas usando One-hot Encoding 

(OHE) (HUANG, 1997). Já CHEN (2016) indica que em muitas tarefas tradicionais de 

mineração de dados, o OHE é amplamente usado para converter características categóricas em 

características numéricas. OHE transforma uma única variável com n observações e d valores 

distintos, em d variáveis binárias com n observações cada. Cada observação indica a presença 

1 ou ausência 0 da d-ésima variável binária. 

 

3.4 Análise dos dados 

 

3.4.1 Hiperparametrização e parametrização de algoritmos 

 

No aprendizado de máquina existem os conceitos de parâmetro e hiperparâmetro de 

algoritmo. O primeiro diz respeito aqueles que podem ser ajustados durante o processo de 

aprendizagem e execução do modelo, como exemplo, o peso de neurônios em redes neurais. 

O segundo refere-se aos parâmetros que devem ser estimados anteriormente ao treinamento, 

isto é, as configurações do algoritmo, como, taxa de aprendizado, função de ativação, número 

de estimadores, entre outros (YANG e SHAMI, 2020). 

O desempenho dos modelos preditivos é influenciado pelos metodos de otimização 

empregados na aprendizagem. A otimização dos hiperparametros, também conhecida por 

parametrização de algoritmo, será responsável por aperfeiçoar a estrutura e precisão do 

modelo de previsão (SUN et al., 2020). 

Existem uma grande variedade de método de parametrização de algoritmos como a 

busca exaustiva em grades (Grid Search), busca aleatória de parâmetros, otimização 
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bayesiana, redução sucessiva, entre outros. Entre os métodos apresentados o grid search é um 

dos mais conhecidos, sendo o que será adotado neste estudo. 

O método grid searchconsite na determinação do melhor hiperparametro por meio da 

avaliação intervalo de grade, testando todas as combinações possíveis no espaço de pesquisa 

pré-determinado. Essa técnica possui a vantagem de fácil implementação, porém, demanda 

muito tempo e perde eficiência à medida que a dimensão do espaço de pesquisa aumenta, pois 

o número de pontos de grade cresce em ritmo exponencial, de modo que torna inviável sua 

aplicação para casos de alta dimensionalidade (YOO, 2019). 

Overfitting é o superajuste aos dados. Em outras palavras, o superajuste ocorre quando 

a hipótese se ajusta muito bem ao conjunto de dados utilizado durante o treino, mas se mostra 

ineficaz na predição de novos exemplos. Neste caso, também é dito que a hipótese memorizou 

ou se especializou no conjunto de treinamento (FACELI et al., 2011). 

Em alguns algoritmos como o XGBOOST, é possível evitar o overfitting com o ajuste 

de hiperparâmetros, pois alguns deles acabam melhorando a variedade de árvores criadas pelo 

modelo. Contudo, o verdadeiro foco do ajuste de parâmetros é encontrar uma configuração 

capaz de potencializar o desempenho do algoritmo utilizado. Uma das técnicas mais famosas 

de tunagem de hiperparâmetros é o grid search, que utiliza conjuntos de valores pré-

estabelecidos de cada parâmetro para realizar uma análise combinacional e encontrar a melhor 

configuração possível (FACELI et al., 2011). 

 

3.4.2 Métricas de desempenho 

 

As métricas de desempenho são utilizadas com o objetivo de avaliar os algoritmos de 

aprendizado de máquina, para os algoritmos de regressão são comuns as métricas de erro 

médio absoluto, erro médio quadrático, erro mediano absoluto e coeficiente de determinação 

(AGWU et al., 2021). 

O erro médio absoluto (MAE) é expresso pela equação. Ele representa a razão entre o 

somatório de todos os erros e o número de pontos, cujo erros correspondem a distância de 

cada ponto à regressão. Para que um modelo preditivo seja perfeito, o MAE deve ser zero. 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑌𝑖 − 𝑋𝑖|

𝑛

𝑖=1

 Equação 3.6 

 



58 
 

Onde, 

n: número de dados; 

 Y e X são, respectivamente, os valores previstos e reais. 

 

O erro médio quadrático (MSE) tem como base o mesmo princípio do MAE, no 

entanto, leva em consideração o quadrado da distância e quanto menor seu valor, melhor será 

a previsão realizada pelo modelo. A sua expressão pode ser vista na Equação. 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑋𝑖)

𝑛

𝑖=1

² Equação 3.7 

 

É uma medida de desvio da diferença entre o valor real e o valor previsto. O RMSE 

tem a mesma unidade de medida do atributo alvo, tornado mais fácil mensurar a exatidão da 

predição. Por isso, RMSE é a medida de erro mais comumente empregada em métodos de 

regressão (FACELI et al., 2011). Sua fórmula é apresentada na Equação. 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑌𝑖 − ℎ(𝑋𝑖))²

𝑛

𝑛

𝑖=1

 Equação 3.8 

Onde, 

 𝑌𝑖 é o valor real da variável; 

 ℎ(𝑋𝑖) é o valor estimado pelo modelo preditivo. 

 

O objetivo com esta medida é aproximar o valor de 0, pois quanto mais próximo de 

zero menor é a distância do ponto real com o ponto de predição. Esta medida expressa o erro 

médio do modelo preditivo comparado com os dados reais. 

Enquanto as três métricas anteriores apontam o quão distantes os dados estão da 

regressão, o coeficiente de determinação (R²) demostra o grau de correlação entre as 

variáveis, ou seja, uma medida estatística de quão próximos os dados estão da linha de 

regressão ajustada. A Equação representa sua expressão matemática. 
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𝑅² =

(

 
∑ (𝐴𝑖 − 𝐴𝑖̅)
𝑛
𝑖=1 (𝑀𝑖 −𝑀𝑖̅̅ ̅)

√∑ (𝐴𝑖 − 𝐴𝑖̅)²
𝑛
𝑖=1 ∑ (𝑀𝑖 −𝑀𝑖̅̅ ̅)²

𝑛
𝑖=1 )

 

2

 Equação 3.9 

 

Onde, 

 𝑀𝑖 e 𝐴𝑖 são valores previsto e real, respectivamente; 

 𝑀𝑖̅̅ ̅ e 𝐴𝑖̅ são suas médias. 

 

Valores de R² no intervalo de 0,7 a 0,9 descrevem uma alta correlação, enquanto entre 

0,0 e 0,3 a correlação é irrelevante. 
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4 METODOLOGIA 

 

Na metodologia é apresentado os métodos adotados para a obtenção dos resultados a 

fim de responder os objetivos traçados. Desta forma, esse capítulo segue o pré-processamento, 

coleta do banco de dados, análise exploratória, os modelos e hiperparâmetros adotados na 

análise de regressão, o método adotado na verificação da confiabilidade, as análises 

experimentais e numéricas computacionais. 

 

4.1 Dataset 

 

O dataset pode apresentar dificuldades relacionadas à qualidade dos dados, tais como, 

dados ruidosos, inconsistentes, redundantes ou incompletos. Como a previsão dos modelos 

ocorrem por meio dos dados, a sua qualidade precisa ser considerada, compreender os dados 

que estão sendo estudados e realizar uma análise criteriosa, garante um modelo confiável. A 

existência de ruído é percebida pela presença de outliers, e os mesmos são analisados para 

verificar a influência que geram na previsão dos modelos de regressão e métodos de cálculo. 

 

4.1.1 Metodologia de Coleta do Dataset 

 

O dataset foi obtido no Kaggle, através da url: 

https://www.kaggle.com/datasets/jrsuri/punching-shear-of-flat-concrete-slabs, disponibilizado 

por Júnior Suriano. Ele declara que o arquivo original é um banco de dados criado pelo The 

American Concrete Institute Committee 445C com resultados experimentais de 519 lajes 

planas ensaiadas por diversos autores desde 1938. Os dados foram filtrados por ele para lajes 

que romperam apenas por punção e algumas das lajes no conjunto de dados original não 

falharam por esse mecanismo, obtendo após a filtragem 417 ensaios. 

Dos 417 ensaios do dataset disponilizado por ele, foi realizado um tratamento 

preliminar para reduzir a dimensionalidade do problema, considerando apenas as variáveis 

mais relevantes que foram utilizadas em outros estudos sobre o assunto, como trabalhos dos 

autores Júnior e Gomes (2023) e Lu et al. (2020), bem como de acordo com a correlação de 

Pearson. As variáveis de entrada selecionadas foram: altura útil da laje (davg), perímetro do 

pilar (C), resistência à compressão do concreto (fc), resistência ao escoamento do aço (fy) e 
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taxa de armadura de flexão (ρavg). A taxa de armadura considerada correspondeu apenas à 

região que passa pelo pilar. A variável de saída é a resistência à punção da laje (Pu). 

 

4.2 Análise exploratória dos dados 

 

A análise exploratória é a análise detalhada das características presentes em um 

conjunto de dados que permite a descoberta de padrões e tendências. Assim, uma grande 

quantidade de informações pode ser extraída de um conjunto de dados, de modo, a auxiliar no 

entendimento do problema e modelar a solução de maneira mais eficiente. Muitas dessas 

características são obtidas através do estudo estatístico descritivo (média, mediana e moda) e 

induzidas por meio da observação do conjunto e representações visuais como gráficos em 

forma de histograma, dispersão ou boxplot. 

A análise exploratória iniciou-se pela descrição dos dados, a plotagem dos gráficos de 

dispersão de cada variável, bem como a geração de gráficos de boxplot e histrograma para 

verificar a disposição dos dados. Outra análise importante realizada foi a verificação de 

correlação dos dados, neste caso, optou-se pela análise de correlação de Pearson e Spearman. 

É importante frisar que antes das análises de regressão é necessário padronizar ou 

normalizar os dados, pois estas análises são sensíveis a dimensionalidade dos dados. Desta 

forma, foi realizado análises de padronização usando o método Z-core da biblioteca 

sklearnpreprocessing importando o StandardScaler. Já para a verificação de normalização 

adotou o MinMax e RobustScarler ambos também da biblioteca sklearnpreprocessing. Nas 

análises foram verificadas qual melhor método correspondia a análise exploratória dos dados, 

desta forma, adotando-o no modelo de regressão. 

 

4.3 Processamento dos dados 

 

4.3.1 Análise de Regressão com Aprendizado de Máquina 

 

Nesta pesquisa, foram utilizados os seguintes modelos de regressão liner múltipla: 

LINEAR, ROBUST, LASSO, RIDGE, ELASTIC NET, POLYNOMIAL, STOCHASTIC 

GRADIENT DESCENT (SGD), GRADIENT BOOSTING MACHINES (GBM), EXTREME 

GRADIENT BOOSTING (XGBOOST), RANDOM FOREST (RF), SUPPORT VECTOR 

REGRESSOR (SVR) E REDES NEURAIS ARTIFICIAS (RNAS). Os modelos são 

analisados para verificar qual modelo preditivo melhor se adapta aos dados. Dentre estes, será 
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escolhido o melhor modelo para comparativo com os métodos de cálculo discutidos no tópico 

a seguir. 

Uma etapa comum no pré-processamento de dados para modelos de ML é o 

escalonamento de dados. Nos dados de entrada, os parâmetros costumam ter magnitudes e 

unidades muito diferentes entre si, o que pode levar o modelo a atribuir incorretamente maior 

importância a variáveis com valores numéricos maiores. Para evitar esse problema, os dados 

são dimensionados para que as características sejam da mesma ordem de grandeza (com 

valores próximos de zero, geralmente entre 0 e 1 ou entre -1 e 1). Neste estudo, três métodos 

de escalonamento da biblioteca Python scikit-learn (sklearn) são aplicados: StandardScaler, 

RobustScaler e MinMaxScaler. De acordo com a documentação da biblioteca sklearn [46], o 

StandardScaler transforma os dados através da técnica z-score, definindo média nula e desvio 

padrão unitário; o RobustScaler dimensiona recursos udando estatísticas robustas para 

outliers; e MinMaxScaler dimensiona os dados para que os valores estejam sempre entre 0 e 

1. Para cada algoritmo de ML, é utilizado o método de dimensionamento que obteve os 

melhores resultados. 

Antes de executar os algoritmos de AM, é comum dividir os dados em conjuntos de 

treinamento e teste. Dessa forma, os modelos são desenvolvidos com base em uma parte do 

conjunto de dados (conjunto de treinamento) e testados com os dados restantes (conjunto de 

teste), para avaliar sua precisão com dados desconhecidos e evitar o overfitting. Para todos os 

modelos deste estudo, os dados são divididos na proporção 70% treino e 30% teste, que é uma 

proporção comum utilizada na literatura. A biblioteca para treinar os modelos de regressão foi 

Train Test Split da sklearn. O escalonamento de dados é executado somente após essa divisão 

para evitar problemas como vazamento de dados. A técnica de validação repetida é usada para 

cada algoritmo. 

As análises foram realizadas no python adotando as bibliotecas da sklearn para todos 

os modelos, exceto para a RNAs em que se adotou o Tensorflow/Keras. Os Hiperparâmetros 

são especificados como parâmetros de entrada. A Tabela 1 apresenta as configurações usadas 

para cada algoritmo, ajustados por meio de hiperparâmetros com grid search. 

O Train Test Split adota o Random State é usado para definir a semente para o gerador 

aleatório para que possamos garantir que os resultados obtidos possam ser reproduzidos. 

Devido à natureza da divisão dos dados em treinamento e teste, obterá dados diferentes 

atribuídos aos dados de treinamento e teste, a menos que possa controlar o fator aleatório. 

Para isso, informa-se um valor ao randomstate para que seja obtido sempre a mesma divisão. 

Desta forma, iniciou-se com valor de 42, porém a fim de verificar se o modelo não estava 
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enviesado para essa distribuição, foi escolhido os 4 melhores modelos e rodados novamente 

com dois novos Random State, no valor de 0 e 23, respectivamente. 

 

Tabela 1 – Hiperparâmetros adotados em cada modelo 

Modelos Parâmetros 

LINEAR None 

ROBUST base_estimator = LinearRegression, max_trials = 100 

LASSO alpha=0.1, selection=random 

RIDGE alpha = 100, solver = cholesky, tol = 0.0001 

ELASTIC NET alpha=0.1, l1_ratio=0.9, selection=random 

POLYNOMINAL Degree = 3 

SGD n_iter_no_change = 250, penalty = None, eta0 = 0.0001, max_iter = 100000 

GB n_estimators=100 

XGBOOST learning_rate = 0.3, max_depth = 2, n_estimators = 400, reg_alpha = 0.2, 

reg_lambda = 0.1 

RF Numberofestimators = 100 

SVR kernel = rbf', C = 10000, epsilon = 0.001 

RNAS Number of Hidden layer = 2, number of neurons in each hidder layer = 64-32, 

activation function = ReLU, optimizer = Adam, learning rate = 0.3, loss 

function = MSE, epochs = 50 

Number of Hidden layer = 2, number of neurons in each hidder layer = 94-94, 

activation function = ReLU, optimizer = Adam, learning rate = 0.3, loss 

function = RMSE, epochs = 50 

 

4.3.2 Comparativo dos Métodos de Cálculo e Modelos Preditivos 

 

Os modelos são calculados de acordo com o método de cálculo proposto pelas normas 

NBR 6118 (2014), ACI 318 (2014) e Eurocode 2 (2004). Com os valores previstos e reais 

será desenvolvido um gráfico de dispersão para gerar o coeficiente de determinação (R²) e 

comparar os valores, verificando se os métodos teóricos estão prevendo de forma satisfatória. 

Com os modelos calculados, procede-se à comparação das estimativas entre si e em 

relação aos resultados experimentais. Essa análise é realizada considerando a dispersão dos 

resultados e examinando a influência dos parâmetros fc, d e ⍴ na relação Pu/Pteo, que 

corresponde à razão entre a resistência da laje determinada experimentalmente e a prevista 
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pelos modelos teóricos. Na determinação da resistência calculada da laje (Pteo), não aplica-se 

nenhum coeficiente de redução da resistência dos materiais ou de aumento da solicitação. 

Outra análise fundamental é o coeficiente de determinação múltipla (R²) entre os 

modelos estudados, pois ela medirá o quão próximos os dados estão da linha de regressão 

ajustada. A definição do R² é a porcentagem da variação da variável resposta que é explicada 

por um modelo linear. Em geral, quanto mais próximo de 1,0 o R², melhor o modelo se ajusta 

aos seus dados. Quanto mais variância for explicada pelo modelo de regressão, mais próximos 

os pontos de dados estarão em relação à linha de regressão ajustada. Teoricamente, se um 

modelo pudesse explicar 100% da variância, os valores ajustados seriam sempre iguais aos 

valores observados e, portanto, todos os pontos de dados cairiam na linha de regressão 

ajustada. O R² não pode determinar se as estimativas e predições dos coeficientes são 

tendenciosas, assim, é prudente avaliar também o gráfico de resíduo. 

 

  



65 
 

5 ANÁLISE DOS RESULTADOS 

 

Neste tópico é apresentado os resultados das análises de regressão utilizando Machine 

Learning (ML), para previsão de resistência à punção de lajes lisas. Os resultados estão 

divididos em etapas, a primeira consistindo em uma análise exploratória dos dados (EDA); a 

segunda referente a adoção de 11 modelos de regressão; a terceira extração dos melhores 

modelos e análise deles variando o radomstate; e por fim, análise do melhor modelo com 

diminuição dos parâmetros de entrada de acordo com a importância de cada variável. Após 

esta verificação, foram analisadas a previsão conforme as normas ACI 318 (2019), NBR 6118 

(2014) e EUROCODE 2 (2004), e por fim, a comparação delas com o modelo de ML que 

melhor se adequou ao dataset. 

 

5.1 EDA 

 

Inicialmente foi gerado um pairplot (ver Figura 15) do conjunto de dados para 

verificar a forma de distribuição destes. Já é possível com estes gráficos de dispersão e 

histograma notar outliers no dataset. Observe que a relação resistência à punção experimental 

(Pu) e altura útil (d) já possuem uma correlação, verificando que a medida que d aumenta Pu 

também aumenta. 
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Figura 15 – Pairplot das variáveis. 

 

 

Além das informações do boxplot que o gráfico de violino já traz consigo, existe a 

exibição da densidade dos dados. A área formada em torno do boxplot representa a 

distribuição dos dados. Os locais de maior área, existe uma grande concentração de dados, 

enquanto em locais de menor área existe uma baixa concentração de dados. Assim, podemos 

notar na Figura 16 que os dados possuem uma maior concentração na resistência à punção 

(Pu) abaixo de 1000 kN e que os dados com valores acima estão sendo tratados como outliers. 

É possível notar ainda que os dados com pilares retangulares estão mais concentrados, e as 

demais geometrias seguem um padrão mais próximo de um violino. 
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Figura 16 –Gráfico violino geometria do pilar x resistência à punção da laje. 

 

 

Para explorar de forma detalhada os dados de acordo com a geometria do pilar, 

verificando sua influência nos dados, foi gerado o gráfico pairplot com a dispersão de acordo 

com a geometria do pilar, conforme apresentado na Figura 17. Observa-se que os pilares de 

seção retangular possuem uma melhor distribuição dos dados, possuindo uma densidade mais 

concentrada e nenhum outlier das variáveis dependentes com a variável independente (Pu). 

Entretanto, conforme pode-se observar também no gráfico de violino, as geometrias circulares 

e quadradas possuem em sua uma distribuição mais dispersa com a presença de outliers. 
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Figura 17 –Pairplot das variáveis de acordo com a geometria do pilar. 

 

 

O jointplot é a junção de um gráfico univariado, nesse caso um histograma, e um 

bivariado, um scatterplot. Para melhor visualização vejamos a Figura 18, representando a 

relação da fc (resistência à compressão do concreto) com Pu (resistência à punção 

experimental) através deste tipo de gráfico. Nota-se o que foi informado, ou seja, a presença 

de outliers e maior densidade na distribuição das geometrias do pilar circular e quadrado. 

Além disso, é possível observar que pouca influência existe na resistência à compressão do 

concreto (fc) no aumento da resistência à punção (Pu). 
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Figura 18 –Gráfico joinplot geometria do pilar x resistência à punção da laje. 

 

 

Como no dataset está presente dados categóricos, se faz necessário a conversão deste. 

Para isto, adotaremos o one-hot encoding, que irá atribuir valor 0 ou 1, dependendo da 

presença ou ausência da característica. Neste caso, se a geometria for circular, na que 

corresponde sua coluna adotará 1 e nas demais 0. A quantidade de pilares de acordo com sua 

geometria pode ser observada na Figura 19. Assim, é possível verificar que a uma pequena 

quantidade de dados para pilares retangulares, comparada aos demais.  

 

Figura 19 –Contagem de pilares de acordo com sua geometria. 

 

 

Além disso foi adicionado uma coluna com perímetro do pilar (C), calculado pelas 

equações de perímetro correspondente a sua geometria, devido ser um parâmetro influente nas 
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normas. A Tabela 2 apresenta as estatísticas descritivas do conjunto de dados após esse 

tratamento. 

 

Tabela 2 – Descrição do conjunto de dados 

 

 

Outro ponto importante antes das análises de regressão é verificar se existem no 

conjunto de dados valores ausentes, pois podem prejudicar a previsão do modelo. Desta 

forma, foi verificado através de um mapa de calor (heatmap) a inexistência de algum dado no 

dataset, conforme ilustrado na Figura 20. 

 

Figura 20 –Mapa de calor para valor ausente no conjunto dos dados 

 

 

De forma análoga, realizou-se um mapa de calor para verificar a correlação das 

variáveis, através do método de correlação de Pearson e Spearman. Na Figura 21, vemos o 

mapa de calor pela correlação de Pearson, observa-se que altura útil (davg) possui a maior 

correlação com a resistência à punção (Pu), cerca de 91%. Enquanto, a geometria do pilar 

(Shape_S, Shape-R, Shape_C), taxa de armadura (ravg) e o quociente de b* (largura da seção 
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de área quadrada equivalente) pela altura útil (davg), possui uma correlação baixa ou 

negativa. 

Figura 21 –Mapa de calor para correlação de Pearson 

 

 

O mesmo ocorre quando realizamos a correlação de Spearman, conforme Figura 22. A 

altura útil mantém como maior correlação, porém um pouco menor, cerca de 81%. Enquanto, 

o perímetro do pilar (C) aumenta para 67%. 

 

Figura 22 –Mapa de calor para correlação de Spearman 

 

 

Realizando uma verificação em gráfico de caixa (boxplot), pode-se notar os outliers 

presentes nas variáveis e os dados precisão ser padronizados/normalizados antes de realizar as 

análises de regressão (ver Figura 23). 
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Figura 23– Boxplot das variáveis do conjunto de dados 

 

 

Diante das análises realizadas optou-se por reduzir as variáveis para as que tenham 

maior correlação com a resistência. Entretanto, embora a taxa de armadura (ravg) apresentou 

uma baixa correlação as normas NBR (2014) e EUROCODE 2 (2004) a adotam em suas 

equações e alguns autores conceituados na área a consideram importante. Sendo assim, será 

mantida no conjunto de dados para que possa ser verificado melhor no modelo de regressão a 

sua importância. Um outro ponto importante é que 44 lajes que não possuíam armadura 

longitudinal na região do pilar foram excluídas, restando 373 resultados experimentais. 

 

5.2 Padronização e normalização 

Ao finalizar a análise exploratória dos dados, iniciou-se a verificação dos dados 

quanto a padronização/normalização. Para isso, foi proposto a análise de dois métodos de 

normalização e um de padronização. Para a padronização adotou-se o Z-core através da 

biblioteca sklearn importando o StandardScaler. Já para a normalização foram adotados os 

métodos MinMax e RobustScaler da mesma biblioteca. 

A Figura 24 apresenta o boxplot dos dados filtrados após a EDA, porém ainda não 

normalizados ou padronizados. Nota-se ainda a presença dos outliers, eles não foram retirados 

do conjunto dos dados devido a sua natureza e para que possa se verificar após as análises sua 

influência na previsão dos modelos. O mesmo pode ser notado na Figura 25 no pairplot. 
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Figura 24– Boxplot após o tratamento do conjunto de dados 

 

 

Figura 25– Pairplot do conjunto de dados tratados 
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A Figura 26 apresenta os dados padronizados, observa-se os boxplot seguem uma 

harmonia, estando numa mesma escala. 

 

Figura 26– Boxplot pelo StandardScaler. 

 

 

Tabela 3 – Descrição do conjunto de dados padronizados 

 

 

A Figura 27 apresenta os dados normalizados pelo MinMax, observa-se que os 

boxplot nos dados padronizados ficaram melhores. 

 

Figura 27– Boxplot pelo MinMax. 
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Tabela 4 – Descrição do conjunto de dados normalizados pelo MinMax 

 

 

A Figura 28 apresenta os dados normalizados pelo RobustScaler, observa-se que os 

boxplot apresentaram uma melhor representação também comparada ao MinMax. Desta 

forma, optar pelo StandardScaler ou RobustScaler nos modelos de regressão será a melhor 

consideração. 

 

Figura 28– Boxplot pelo RobustScaler 

 

 

Tabela 5 – Descrição do conjunto de dados normalizados pelo RobustScaler 
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5.3 Análise dos modelos de regressão 

 

Este tópico tratará dos modelos de regressão analisados neste estudo, são ao todo 14 

modelos considerados para verificar qual melhor se ajusta ao conjunto de dados coletados. Ele 

está dividido em uma análise inicial com todos os modelos de regressão, após será realizado 

uma análise variando o Random state para verificar se o modelo está enviesado e evitar o 

overfitting. Por fim, será realizado a análise da influência das variáveis independentes na 

previsão dos resultados, excluindo algumas variáveis preditoras baseado nos modelos 

normativos, em especial o ACI 318 (2014) que considera apenas a resistência do concreto 

(fc), perímetro do pilar (C) e altura útil em seus cálculos. 

 

5.3.1 Regressão com RandomState 42 

 

No primeiro momento foi analisado o modelo utilizando a biblioteca skearln, traintest 

split, adotando 30% teste e 70% traino, e um radomstate de 42. A padronização pelo 

StandardScaler foi adotada para os dados. 

O modelo de regressão linear obteve uma intercepção 387,8007 e coeficientes de 

acordo com apresentado na Tabela 6. 

 

Tabela 6–Coeficientes do modelo de regressão 

Parâmetros Coeficientes 

d (altura útil) 415,5381 

p (taxa de armadura) 69,6375 

C (perímetro do pilar) 35,6913 

fc (resistência à compressão do concreto) 69,1340 

fy (tensão de escoamento do aço) 24,4885 

 

 

Na tabela 7 e Figura 29 é apresentado os valores obtidos da métricas de desempenho 

do modelo de regressão linear. Observa-se que o coeficiente de determinação (R²) para teste e 

traino obteve um valor de aproximadamente 0,85 e 0,90, respectivamente. Assim, este modelo 

possui 
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Tabela 7–Métricas de Avaliação para o modelo de regressão 

 Test set Train set 

MAE 109,9151 103,5331 

MSE 24276,15 23903,8871 

RMSE 155,8081 154,6088 

R² 0,8547 0,8953 

 

Figura 29– Modelo de regressão linear múltipla 

 

a) Test 

 

b) Training 

 

Figura 30– Erro valores 

 

 

A multicolinearidade (VIF) é de 6,8840, acima de 5, indicando multicolinearidade. 
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Figura 31– Modelo de regressão linear múltipla 

 

a) Multicolinearidade 

 

b) Homoscedasticidade 

 

A Figura 32 apresenta a métrica R² para os modelos de regressão. Constata-se que o 

modelo ROBUST para teste e traino obteve um valor de aproximadamente 0,66 e 0,69, 

respectivamente. Assim, este modelo foi o que apresentou menor desempenho comparado aos 

demais. Os modelos LASSO, ELASTIC NET, SGD e GB obtiveram valores de R² 

semelhantes para teste e traino aproximadamente 0,85 e 0,90, respectivamente. 

Em relação ao modelo de regressão POLINOMIAL o coeficiente de determinação (R²) 

para teste e traino obteve um valor de aproximadamente 0,93 e 0,98, respectivamente. Já os 

modelos ensemble XGBOOST e RF obteram valores altos de coeficiente de determinação, 

para o XGBOOST foram 0,92 para teste e 1,00 para treino. Já o RF obteve 0,92 e 0,98, para 

teste e treino, respectivamente. 

O modelo baseado em hiperplano SVM apresentou valores também elevados de R², 

sendo 0,92 para teste e 0,99 para treino. Se utilizarmos o SVM combinando com o modelo 

ensemble XGBOOST o modelo apresenta melhoras na previsão. O coeficiente de 

determinação (R²) para teste e traino apresenta valores de aproximadamente 0,95 e 1,00. 

O modelo de redes neurais foi realizado utilizando o otimizador Adam, learning rate 

de 0,3, ativação pelo Relu, e duas camadas de 64 e 32 no primeiro teste e depois duas 

camadas de 94. O primeiro teste adotou o parâmetro loss MSE e o outro RMSE. Como pode 

ser observado o modelo de RNA 64-32 e RNA 94-94 apresentou valores semelhantes de R², 

sendo 0,91 para teste e 0,96 para treino do modelo RNA 64-32 e 0,91 para teste e 0,95 para 

treino do modelo RNA 94-94. 
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Figura 32– Modelos de regressão 

 

a) ROBUST TEST 

 

b) ROBUST TRAINING 

 

c) RIDGE TEST 

 

d) RIDGE TRAINING 

 

e) LASSO TEST 

 

f) LASSO TRAINING 
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g) ELASTIC NET TEST h) ELASTIC NET TRAINING 

 

i) SGD TEST 

 

j) SGD TRAIN 

 

k) GB TEST 

 

l) GB TRAINING 

 

m) POLINOMIAL TEST 

 

n) POLINOMIAL TRAINING 

 

o) XGBOOST TEST 

 

p) XGBOOST TRAINING 



81 
 

 

q) RF TESTE 

 

r) RF TRAINING 

 

s) SVM TEST 

 

t) SVM Training 

 

u) SVM TEST 

 

v) SVM TRAINING 

 

w) ANN 64-32 TEST 

 

x) ANN 64-32 TRAINING 
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y) ANN 94-94 TEST 

 

z) ANN 94-94 TRAINING 

 

O histograma residual pode ser usado para determinar se a variância é normalmente 

distribuída ou não. A suposição de normalidade provavelmente será válida se o histograma 

em forma de sino for simétrico e uniformemente distribuído em torno de zero. 

A Figura 33 representa o histograma dos resíduos com uma curva de densidade de 

probabilidade contínua dos resíduos. Levando em consideração as informações da figura 

anterior e da seguinte, que avalia a normalidade da distribuição residual, revela que todos os 

erros de previsão dos regressores apresentam uma distribuição normal, com a maioria dos 

resíduos medidos em relação à sua densidade tendo o potencial de assumir a forma de um 

sino. É possível notar também a presença de alguns outliers na distribuição dos resíduos, 

observando a flutuação da linha dos valores do erro. 

 

Figura 33– Erro valores 

 

a) ROBUST ERRO 

 

b) RIDGE ERRO 
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c) LASSO ERRO 

 

d) ELASTIC NET ERRO 

 

e) SGD ERRO 

 

f) GB ERRO 

 

g) POLINOMIAL ERRO 

 

h) XGBOOST ERRO 
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i) RF ERRO j) SVM ERRO 

 

k) ANN 64-32 

 

l) ANN 94-94 

 

Na Tabela 8 é apresentado as métricas de avaliação de desempenho dos modelos de 

regressão. Para ambos as métricas quanto menor seus valores melhores é o desempenho do 

modelo. Isso indica que o modelo está fazendo previsões mais precisas. 

O MAE mede a média das diferenças absolutas entre os valores reais e as previsões do 

modelo. Neste caso, pode-se verificar que o modelo com menor Erro Médio Absoluto é o 

SVM com valor de 58,68 para teste e 16,61 para treino, seguido do POLINOMIAL com valor 

de 60,87 para teste e 43,25 para treino. Já o com valor mais alto é o GB, possuindo valores de 

111,21 para teste e 102,19 para treino. 

O MSE mede a média das diferenças quadráticas entre os valores reais e as previsões 

do modelo. É mais sensível a erros grandes, pois os erros são elevados ao quadrado. Isso 

significa que erros maiores contribuirão muito mais para o valor do MSE do que erros 

menores. O menor valor de Erro Quadrático Médio é o modelo POLINOMIAL, com valores 

11590,96 para teste, porém para treino foi o modelo XGBOOST com valor de 439,72. E o 

pior foi o modelo ROBUST com valores de 56825,47 para teste e 69860,63 para treino. 

O RMSE é a raiz quadrada do MSE. Ele fornece uma métrica na mesma escala das 

variáveis dependentes. O modelo com melhor desempenho para teste foi o POLINOMIAL 

com valor de 107,66 e para treino XGBOOST com valor de 20,97. O modelo ROBUST 

continua a apresentar o pior desempenho para esta métrica, com valor de 238,38 para teste e 

264,31 para treino. 
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Tabela 8–Métricas de Avaliação para os modelos de regressão 

ROBUST RIDGE LASSO 

Métricas Test set Train set Métricas Test set Train set Métricas Test set Train set 

MAE 105,72 100,11 MAE 105,44 92,19 MAE 111,07 102,14 

MSE 56825,47 69860,63 MSE 34900,15 36448,54 MSE 24231,16 23318,14 

RMSE 238,38 264,31 RMSE 186,82 190,92 RMSE 155,66 152,70 

R² 0,66 0,69 R² 0,79 0,84 R² 0,85 0,90 

ELASTIC NET SGB GB 

Métricas Test set Train set Métricas Test set Train set Métricas Test set Train set 

MAE 110,62 101,49 MAE 111,21 102,19 MAE 110,62 101,49 

MSE 24358,67 23342,19 MSE 24253,26 23321,29 MSE 24358,67 23342,19 

RMSE 156,07 152,78 RMSE 155,73 152,71 RMSE 156,07 152,78 

R² 0,85 0,90 R² 0,85 0,90 R² 0,85 0,90 

XGBOOST POLINOMIAL RF 

Métricas Test set Train set Métricas Test set Train set Métricas Test set Train set 

MAE 64,10 7,94 MAE 60,87 43,25 MAE 63,31 26,89 

MSE 12982,31 439,72 MSE 11590,96 4280,51 MSE 13774,01 5377,72 

RMSE 113,94 20,97 RMSE 107,66 65,43 RMSE 117,36 73,33 

R² 0,92 1,00 R² 0,93 0,98 R² 0,92 0,98 

SVM ANN 64-32 ANN 94-94 

Métricas Test set Train set Métricas Test set Train set Métricas Test set Train set 

MAE 58,62 16,61 MAE 72,46 66,39 MAE 89,47 78,48 

MSE 13254,00 1590,52 MSE 14325,58 9502,89 MSE 15497,00 12552,47 

RMSE 115,13 39,88 RMSE 119,69 97,48 RMSE 124,49 112,04 

R² 0,92 1,00 R² 0,91 0,96 R² 0,91 0,95 

 

Alguns modelos disponibilizam a informação do grau de importância de cada variável 

em suas previsões. No caso do LASSO os valores de importância para as variáveis são: d = 

408,06, fc = 70,56, ravg = 67,51, C = 46,77, fy = 30,10. Como pode-se notar a altura útil 

possui maior influência na previsão deste modelo. Já o ELASTIC NET O grau de importância 

são: d = 402,15, fc = 71,46, ravg = 65,58, C = 49,37, fy = 30,02. O modelo GB considera o 

grau de importância da seguinte: d = 84%, fc = 3,19%, ravg = 2,69%, C = 5,38%, fy = 4,9%. 

O XGBOOST considera: d = 90%, fc = 2,49%, ravg = 2,95%, C = 3,07%, fy = 1,63%. E o RF 

considera: d = 86%, fc = 2,35%, ravg = 3,59%, C = 4,44%, fy = 3,67%. Assim, como é 

possível observar em todos as técnicas de regressão a variável altura útil (d) é considerada de 

maior importância em suas previsões. 
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5.3.1.1 Comparação dos modelos 

 

Na Tabela 9 e Figura 34 pode ser visto os modelos adotados e suas métricas no teste. 

Em relação a validação cruzada (cross-validation) um valor negativo, em geral, não é 

esperado quando se utiliza validação cruzada em tarefas de aprendizado de máquina. O 

propósito da validação cruzada é avaliar o desempenho de um modelo em dados de teste, que 

são diferentes dos dados de treinamento, a fim de verificar sua capacidade de generalização. 

Esses modelos com valores negativos podem indicar que estas técnicas não são 

adequadas para o conjunto de dados analisados. Podendo ser que o modelo linear pode não ter 

funcionado bem para os dados altamente não lineares. 

Nota-se que os modelos POLINOMIAL, XGBOOST, RF, SVM e RNA foram os que 

melhor se destacaram. Desta forma, são os que prosseguiram nas próximas análises. 

 

Tabela 9–Métricas de Avaliação do teste para os modelos de regressão 
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Figura 34– Desempenho do R² nos modelos de regressão 

 

 

 

5.3.2 Regressão com Random State 0 

 

Com as análises realizadas anteriormente foi possível verificar os modelos que melhor 

se adequam na previsão. Diante disto, foi escolhido os 5 melhores modelos, sendo estes: 

POLINOMIAL, XGBOOST, RF, SVM e ANN; para que seja analisado alterando o Random 

State para 0. 

O modelo polinomial apresenta uma constância no coeficiente de determinação (R²), 

os valores ficaram próximos da análise utilizando Random state 42, ou seja, 0,93 para teste e 

0,98 para treino. Enquanto para um Random state 0 o valor aproximadamente para teste foi de 

0,98 e para treino 0,97 (ver Figura 35). 

Os modelos XGBOOST, RF e SVM alterando o Random State é possível verificar que 

não apresentou um R² para teste e traino confiável, indicando overfitting. Já os modelos RNA 

apresentaram resultados satisfatórios, uma constância na previsibilidade. 
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Figura 35– Modelo de regressão com Random state 0. 

 

a)  POLINOMIAL TEST 

 

b) POLINOMAIL TRAINING 

 

c) XGBOOST TEST 

 

d) XGBOOST TRAINING 

 

e) RF TEST 

 

f) RF TRAINING 

 

g) SVM TEST 

 

h) SVM TRAINING 
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i) ANN 64-32 TEST 

 

j) ANN 64-32 TRAINING 

 

k) ANN 94-94 TEST 

 

l) ANN 94-94 TRAINING 

 

A Figura 36 apresenta o gráfico de erros e de resíduos. No gráfico de erros e resíduos é 

possível a presença de alguns outliers. No entanto, não prejudicam de maneira significativa o 

modelo. 

 

Figura 36– Erro valores e resíduos do modelo polinomial 

 

a) Gráfico de Erros 

 

b) Gráfico de Resíduos 

 

Na Tabela 10 é apresentando as métricas de avaliação para os modelos com Random 

state 0. É possível constatar que o modelo POLINOMIAL apresenta as melhores métricas 
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para o MAE, MSE, RMSE e R². Desta forma, confirma que o modelo é o que apresenta 

melhor desempenho para o conjunto de dados analisados neste estudo. 

 

Tabela 10–Métricas de Avaliação para os modelos de regressão com Random state 0 

XGBOOST POLINOMIAL RF 

Métricas Test set Train set Métricas Test set Train set Métricas Test set Train set 

MAE 67,02 5,34 MAE 46,51 49,53 MAE 74,44 23,50 

MSE 55697,65 62,89 MSE 5218,47 6218,81 MSE 74952,14 2256,41 

RMSE 236,00 7,93 RMSE 72,24 78,86 RMSE 273,77 47,50 

R² 0,76 1,00 R² 0,98 0,97 R² 0,68 0,99 

SVM ANN 64-32 ANN 94-94 

Métricas Test set Train set Métricas Test set Train set Métricas Test set Train set 

MAE 82,31 17,68 MAE 56,81 52,62 MAE 53,18 45,23 

MSE 153799,86 2605,44 MSE 9552,26 7107,70 MSE 11628,52 5298,20 

RMSE 392,17 51,04 RMSE 97,73 84,31 RMSE 107,83 72,79 

R² 0,35 0,99 R² 0,96 0,96 R² 0,95 0,97 

 

5.3.3 Regressão com Random State 23 

 

Para certificar definitivamente o enviesamento dos modelos e confirmar que o modelo 

polinomial é o que melhor se adequa aos dados e que as redes neurais apresentaram também 

bom desempenho, foi realizado uma nova análise alterando o Random State para 23. 

O modelo polinomial apresenta uma constância no coeficiente de determinação (R²), 

os valores se mantêm próximos da análise utilizando Random state 42 e 0, ou seja, 0,93 para 

teste e 0,98 para treino para 42, e 0,98 para teste e 0,97 para treino, respectivamente. Já os 

valores para Random State 23 sendo 0,95 para teste e 0,98 para treino (ver Figura 37 e Tabela 

11). 

 

Figura 37– Modelo de regressão polinomial com Random state 23. 

 

a)  POLINOMIAL TEST 

 

b) POLINOMAIL TRAINING 
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Os demais modelos são apresentados de forma resumida na Tabela 11. Nota-se que o 

SVM melhora suas previsões com essa divisão dos dados, passando a ter um R² de 0,94 e 0,99 

para teste e treino. Embora os valores sejam interessantes o modelo não consegui previr bem a 

aleatoriedade, conforme constado com o Random state 0. Os modelos baseados em redes 

neurais se mostraram bastante promissores, conseguindo prever bem na aleatoriedade dos 

dados. 

 

Tabela 11–Métricas de Avaliação para os modelos de regressão com Random state 23 

XGBOOST POLINOMIAL RF 

Métricas Test set Train set Métricas Test set Train set Métricas Test set Train set 

MAE 62,98 5,96 MAE 50,05 45,36 MAE 64,81 28,59 

MSE 15062,46 79,71 MSE 6428,07 5791,75 MSE 19961,07 6087,26 

RMSE 122,73 8,93 RMSE 80,17 76,10 RMSE 141,2836 78,02 

R² 0,89 1,00 R² 0,95 0,98 R² 0,86 0,97 

SVM ANN 64-32 ANN 94-94 

Métricas Test set Train set Métricas Test set Train set Métricas Test set Train set 

MAE 44,91 19,12 MAE 65,77 69,20 MAE 56,32 51,37 

MSE 7292,46 2789,97 MSE 10949,54 12991,63 MSE 9636,96 8042,37 

RMSE 85,39 52,82 RMSE 104,64 113,98 RMSE 98,17 89,68 

R² 0,94 0,98 R² 0,92 0,95 R² 0,93 0,97 

 

5.4 Influência das Variáveis ACI 318 

 

De acordo com a correlação de Pearson as variáveis altura útil(d), resistência do 

concreto (fc) e perímetro do pilarc (C) são as variáveis de maior correlação com a resistência 

à punção (Pu). Os valores de correlação são apresentados na Figura 38. 

 

Figura 38– Mapa de calor da correlação de Pearson para as variáveis do ACI 318 
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O modelo polinomial apresenta o coeficiente de determinação (R²) para teste e treino 

com valores de 0,93 conforme apresentado na Tabela 12 e Figura 39. Observa-se que a 

exclusão das variáveis de taxa de armadura de flexão e tensão de escoamento da armadura 

possuem pouca influência no modelo, e que a falta de dados destas variáveis não prejudica de 

forma drástica o modelo, ou seja, com apenas as variáveis de altura útil, perímetro do pilar e 

resistência à compressão do concreto, é suficiente para realizar uma boa previsão da 

resistência à punção de lajes lisas. Em muitos casos, coletar as informações para construção 

de um banco de dados experimental de ensaios de engenharia civil é complicada, pois em 

muitos estudos os autores não fornecem todas as informações de seus experimentos. Desta 

forma, os dados acabam sendo descartados das análises. Outro ponto a destacar, é que o 

estudo demostra que é possível realizar o dimensionamento de lajes lisas apenas por meio 

destas variáveis. 

 

Tabela 12–Métricas de Avaliação para o modelo polinomial variáveis ACI 

 Test set Train set 

MAE 70,31 74,19 

MSE 15980,79 13410,06 

RMSE 126,41 115,80 

R² 0,93 0,93 

 

Figura 39– Modelo de regressão polinomial variáveis ACI 

 

c) Test 

 

d) Training 

 

5.4.1 Influência da variável altura útil 

 

Como pode ser observado nas análises realizadas anteriormente, a altura útil possui 

maior influência na variável dependente, ou seja, na previsão da resistência à punção de lajes 
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lisas. Desta forma, optou-se em realizar a previsão somente com essa variável independe no 

modelo polinomial. Nota-se que está variável ainda consegue prever boa parte da resistência, 

possuindo um R² de 0,87 e 0,80, para teste e traino, respectivamente (ver Tabela 13 e Figura 

40). 

 

Tabela 13–Métricas de Avaliação para o modelo polinomial variável d 

 Test set Train set 

MAE 117,71 131,58 

MSE 30732,11 40346,43 

RMSE 175,30 200,86 

R² 0,87 0,80 

 

Figura 40– Modelo de regressão polinomial variável d 

 

a) Test 

 

b) Training 

 

5.5 Comparativo normativo e modelo preditivo em ML 

 

A Figura 41 apresenta a distribuição das relações Pu/Pteo e suas respectivas dispersões 

para as normas ACI 319 (2019), NBR 6118 (2014), EUROCODE 2 (2004) e Modelo 

Polinomial. Comparando-as com os resultados ideais, devidamente representados pelas retas 

que sugerem comparativamente a admissão de Pu=Pteo. Observa-se que o modelo polinomial 

dentre os Random state analisado o de menor valor foi de 0,95 e esse modelo foi o adotado 

aqui na análise para efeitos comparativos. Desta forma, é possível notar que o modelo 

apresentou melhores resultados quando comparado com as normas. A norma ACI 318 (2014) 

foi a que apresentou menor desempenho, apesar de não considerar alguns parâmetros em sua 

formulação empírica, talvez a formulação proposta não tenha sido a adequada, visto que o 

modelo polinomial mesmo com a redução das variáveis conforme a ACI apresentou para o 
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modelo polinomial um bom desempenho, com R² de 0,93 para teste e treino, conforme visto 

no 5.4.1. 

 

Figura 41– Distribuição das relações experimental pelas normas ACI 318 (2019), NBR 6118 

(2014), EUROCODE 2 (2004) e modelo polinomial. 

 

a) ACI (2014) 

 

b) Eurocode 2 (2004) 

 

c) NBR 6118 (2014) 

 

d) POLINOMIAL 

 

Com este estudo pode-se constatar que a utilização do aprendizado de máquina na 

engenharia civil pode contribuir significativamente para melhor compreensão dos dados, além 

de aprimorar os conhecimentos já existentes do assunto. As normas de laje lisa foram 

desenvolvidas de forma empírica. Neste caso, o AM pode contribuir significativamente para 

melhoria das previsões normativas. 

A consideração do modelo de regressão e seus hiperparâmetros são fundamentais para 

obter bons resultados, pois a gama de técnicas disponíveis atualmente devem ser exploradas a 

fim de ser utilizada no conjunto de dados a que melhor se adequa. Como pode ser visto, em 

muitas técnicas os dados não tiveram boa representatividade, sendo piores em desempenho se 
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compararmos com as normas. Por outro lado, algumas técnicas apresentaram overfitting, 

talvez uma análise mais profunda poderia ajudar na compreensão dos dados, tais como a 

verificação dos outliers e suas remoções, ajustes nos hiperparâmetros, validações cruzada tipo 

k-fold, entre outros. 
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6 CONCLUSÕES 

 

Buscou-se analisar a precisão de alguns métodos teóricos disponíveis para a estimativa 

da resistência à punção de lajes lisas de concreto armado sem armadura de cisalhamento. 

Foram avaliadas as recomendações das normas ACI 318 (2014), EUROCODE 2 (2004), NBR 

6118 (2014) e modelo de aprendizado de máquina. As conclusões obtidas são descritas a 

seguir. 

A EUROCODE 2 (2004) dentre as normas foi a que apresentou melhor desempenho. 

Já o modelo de ML destacou-se o modelo POLINOMIAL, pois representou melhor os dados 

mesmo alterando o Random State e diminuindo o número de variáveis independentes. Desta 

forma, é importante destacar, que somente com os parâmetros de altura útil, resistência do 

concreto à compressão e perímetro do pilar é suficiente para prever bons resultados com o 

modelo polinomial, o que diminui muito a coleta dos dados experimentais. 

Outro ponto que se destaca é a influência da altura útil na previsão dos modelos, 

somente esta variável possui uma faixa de influência de acordo com os modelos analisados de 

87 a 91% na previsão da resistência à punção. 

A consideração somente das variáveis independentes, altura útil, resistência do 

concreto e perímetro do pilar apresentaram para o modelo polinomial um bom desempenho, 

com R² de 0,93 para teste e treino, valores maiores que os obtidos pelas normativas. 

Os modelos em RNA também apresentaram bons resultados, podendo serem objetos 

de aprofundamento em um outro estudo, alterando os hiperparâmetros, números de camadas, 

entre outros, para verificar o melhor ajuste neste conjunto de dados. 

A consideração de modelos de aprendizagem de máquina para melhorar a previsão da 

resistência à punção em lajes lisas se mostrou interessante e um excelente ponto de discussão, 

pois pesquisas mais profundas no assunto podem contribuir para melhoramento dos modelos 

de cálculo já existentes e auxiliar em uma melhor compressão da influência das variáveis no 

resultado da resistência à punção das lajes lisas. Esses modelos podem ser extrapolados para 

outros problemas, envolvendo diversos assuntos da área da engenharia civil. 

 

6.1 Sugestões para trabalhos futuros 

 

A pesquisa realizada contribui para a identificação de alguns aspectos relevantes sobre 

o comportamento à punção de lajes lisas de concreto armado. Para dar continuidade ao estudo 
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realizado, outras pesquisas podem ser feitas, buscando investigar mais profundamente os 

aspectos observados. Dentre eles, temos: 

 

• Analisar os outliers com maior rigor para verificar a influência deles nos 

modelos preditivos, podendo adotar modelos como Holdout, k-fold, Leave-

One, Stratifield k-fold, Shuffle, entre outros; 

• Verificar de forma mais profunda os modelos RNAs que apresentaram bons 

resultados; 

• Propor melhorias nas normas com base nos modelos de aprendizado de 

máquinas; 

• Analisar lajes lisas com armadura de cisalhamento. Verificando como ocorre a 

ruptura nas diversas regiões e se as normas e modelos de ML conseguem 

estimar bem essas rupturas; 

• Buscar analisar as recomendações normativas da EUROCODE 2 (2010) e 

NBR 6118 (2014) quanto ao Vmáx; 

• Verificar a influência do sizeeffect na resistência à punção em lajes lisas de 

concreto armado. 
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